Source code for vector

'''
Routines for working with vectors
These routines can be used with vectors, as well as with matrices containing a vector in each row.
'''
 
'''
author :  Thomas Haslwanter
date :    Oct-2020
'''

import numpy as np


# The following construct is required since I want to run the module as a script
# inside the skinematics-directory
import os
import sys

file_dir = os.path.dirname(__file__)
if file_dir not in sys.path:
    sys.path.insert(0, file_dir)

import quat

# For deprecation warnings
#import deprecation
import warnings
#warnings.simplefilter('always', DeprecationWarning)


[docs]def normalize(v): ''' Normalization of a given vector (with image) Parameters ---------- v : array (N,) or (M,N) input vector Returns ------- v_normalized : array (N,) or (M,N) normalized input vector .. image:: ../docs/Images/vector_normalize.png :scale: 33% Example ------- >>> skinematics.vector.normalize([3, 0, 0]) array([[ 1., 0., 0.]]) >>> v = [[np.pi, 2, 3], [2, 0, 0]] >>> skinematics.vector.normalize(v) array([[ 0.6569322 , 0.41821602, 0.62732404], [ 1. , 0. , 0. ]]) Notes ----- .. math:: \\vec{n} = \\frac{\\vec{v}}{|\\vec{v}|} ''' from numpy.linalg import norm # Distinguish between a vector and a matrix if np.array(v).ndim == 1: vectorFlag = True else: vectorFlag = False # The 'atleast_2d' ensures that the program works on matrices. # The 'double' avoids trouble 2 lines down, if v is integer. # And the 'copy' ensures that the input is not modified in the calling program. v = np.double(np.atleast_2d(v)).copy() length = norm(v,axis=1) v[length!=0] = (v[length!=0].T/length[length!=0]).T if vectorFlag: v = v.ravel() return v
[docs]def angle(v1,v2): '''Angle between two vectors Parameters ---------- v1 : array (N,) or (M,N) vector 1 v2 : array (N,) or (M,N) vector 2 Returns ------- angle : double or array(M,) angle between v1 and v2 .. image:: ../docs/Images/vector_angle.png :scale: 33% Example ------- >>> v1 = np.array([[1,2,3], >>> [4,5,6]]) >>> v2 = np.array([[1,0,0], >>> [0,1,0]]) >>> skinematics.vector.angle(v1,v2) array([ 1.30024656, 0.96453036]) Notes ----- .. math:: \\alpha =arccos(\\frac{\\vec{v_1} \\cdot \\vec{v_2}}{| \\vec{v_1} | \\cdot | \\vec{v_2}|}) ''' # make sure lists are handled correctly v1 = np.array(v1) v2 = np.array(v2) if v1.ndim < v2.ndim: v1, v2 = v2, v1 n1 = normalize(v1) n2 = normalize(v2) if v2.ndim == 1: angle = np.arccos(n1.dot(n2)) else: angle = np.arccos(list(map(np.dot, n1, n2))) return angle
[docs]def project(v1,v2, projection_type='1D'): '''Project one vector onto another, or into the plane perpendicular to that vector. Parameters ---------- v1 : array (N,) or (M,N) projected vector v2 : array (N,) or (M,N): target vector projection_type : scalar Has to be one of the following: - 1D ... projection onto a vector (Default) - 2D ... projection into the plane perpendicular to that vector Returns ------- v_projected : array (N,) or (M,N) projection of v1 onto v2 .. image:: ../docs/Images/vector_project.png :scale: 33% Example ------- >>> v1 = np.array([[1,2,3], >>> [4,5,6]]) >>> v2 = np.array([[1,0,0], >>> [0,1,0]]) >>> skinematics.vector.project(v1,v2) array([[ 1., 0., 0.], [ 0., 5., 0.]]) Notes ----- .. math:: \\vec{n} = \\frac{ \\vec{a} }{| \\vec{a} |} \\vec{v}_{proj} = \\vec{n} (\\vec{v} \\cdot \\vec{n}) \\mathbf{c}^{image} = \mathbf{R} \cdot \mathbf{c}^{space} + \mathbf{p}_{CS} *Note* that the orientation of the 2D projection is not uniquely defined. It is chosen here such that the y-axis points up, and one is "looking down" rather than "looking up". ''' v1 = np.atleast_2d(v1) v2 = np.atleast_2d(v2) e2 = normalize(v2) if projection_type == '1D': if e2.ndim == 1 or e2.shape[0]==1: return (e2 * list(map(np.dot, v1, e2))).ravel() else: return (e2.T * list(map(np.dot, v1, e2))).T elif projection_type == '2D': if e2.shape[0] > 1: raise ValueError('2D projections only implemented for fixed projection-plane!') x,y,z = e2[0] projection_matrix = np.array( [[-y, -x*z, x], [ x, -y*z, y], [ 0, x**2+y**2, z]]) if z > 0: # choose a downward-pointing look for the projection projection_matrix = projection_matrix * np.r_[-1, 1, -1] projected = v1 @ projection_matrix projected = projected[:,:2] if e2.ndim == 1 or e2.shape[0]==1: return projected.ravel() else: return projected else: raise ValueError('{0} not allowed as projection_type in vector.project!'.format(projection_type))
[docs]def GramSchmidt(p0,p1,p2): '''Gram-Schmidt orthogonalization Parameters ---------- p0 : array (3,) or (M,3) coordinates of Point 1 p1 : array (3,) or (M,3) coordinates of Point 2 p2 : array (3,) or (M,3) coordinates of Point 3 Returns ------- Rmat : array (9,) or (M,9) flattened rotation matrix .. image:: ../docs/Images/GramSchmidt.jpg :scale: 25% Example ------- >>> P0 = np.array([[0, 0, 0], [1,2,3]]) >>> P1 = np.array([[1, 0, 0], [4,1,0]]) >>> P2 = np.array([[1, 1, 0], [9,-1,1]]) >>> GramSchmidt(P0,P1,P2) array([[ 1. , 0. , 0. , 0. , 1. , 0. , 0. , 0. , 1. ], [ 0.6882472 , -0.22941573, -0.6882472 , 0.62872867, -0.28470732, 0.72363112, -0.36196138, -0.93075784, -0.05170877]]) Notes ----- The flattened rotation matrix corresponds to .. math:: \\mathbf{R} = [ \\vec{e}_1 \\, \\vec{e}_2 \\, \\vec{e}_3 ] ''' # If inputs are lists, convert them to arrays: p0 = np.array(p0) p1 = np.array(p1) p2 = np.array(p2) v1 = np.atleast_2d(p1-p0) v2 = np.atleast_2d(p2-p0) ex = normalize(v1) ey = normalize(v2- project(v2,ex)) ez = np.cross(ex,ey) return np.hstack((ex,ey,ez))
[docs]def plane_orientation(p0, p1, p2): '''The vector perpendicular to the plane defined by three points. Parameters ---------- p0 : array (3,) or (M,3) coordinates of Point 0 p1 : array (3,) or (M,3) coordinates of Point 1 p2 : array (3,) or (M,3) coordinates of Point 2 Returns ------- n : array (3,) or (M,3) vector perpendicular to the plane .. image:: ../docs/Images/vector_plane_orientation.png :scale: 33% Example ------- >>> P0 = np.array([[0, 0, 0], [1,2,3]]) >>> P1 = np.array([[1, 0, 0], [4,1,0]]) >>> P2 = np.array([[1, 1, 0], [9,-1,1]]) >>> plane_orientation(P0,P1,P2) array([[ 0. , 0. , 1. ], [-0.36196138, -0.93075784, -0.05170877]]) Notes ----- .. math:: \\vec{n} = \\frac{ \\vec{a} \\times \\vec{b}} {| \\vec{a} \\times \\vec{b}|} ''' # If inputs are lists, convert them to arrays: p0 = np.array(p0) p1 = np.array(p1) p2 = np.array(p2) v01 = p1-p0 v02 = p2-p0 n = np.cross(v01,v02) return normalize(n)
#@deprecation.deprecated(deprecated_in="1.7", removed_in="1.9", #current_version=__version__, #details="Use the ``q_shortest_rotation`` function instead")
[docs]def q_shortest_rotation(v1,v2): '''Quaternion indicating the shortest rotation from one vector into another. You can read "qrotate" as either "quaternion rotate" or as "quick rotate". Parameters ---------- v1 : ndarray (3,) first vector v2 : ndarray (3,) second vector Returns ------- q : ndarray (3,) quaternion rotating v1 into v2 .. image:: ../docs/Images/vector_q_shortest_rotation.png :scale: 33% Example ------- >>> v1 = np.r_[1,0,0] >>> v2 = np.r_[1,1,0] >>> q = qrotate(v1, v2) >>> print(q) [ 0. 0. 0.38268343] ''' # calculate the direction n = normalize(np.cross(v1,v2)) # make sure vectors are handled correctly n = np.atleast_2d(n) # handle 0-quaternions nanindex = np.isnan(n[:,0]) n[nanindex,:] = 0 # find the angle, and calculate the quaternion angle12 = angle(v1,v2) q = (n.T*np.sin(angle12/2.)).T # if you are working with vectors, only return a vector if q.shape[0]==1: q = q.flatten() return q
[docs]def rotate_vector(vector, q): ''' Rotates a vector, according to the given quaternions. Note that a single vector can be rotated into many orientations; or a row of vectors can all be rotated by a single quaternion. Parameters ---------- vector : array, shape (3,) or (N,3) vector(s) to be rotated. q : array_like, shape ([3,4],) or (N,[3,4]) quaternions or quaternion vectors. Returns ------- rotated : array, shape (3,) or (N,3) rotated vector(s) .. image:: ../docs/Images/vector_rotate_vector.png :scale: 33% Notes ----- .. math:: q \\circ \\left( {\\vec x \\cdot \\vec I} \\right) \\circ {q^{ - 1}} = \\left( {{\\bf{R}} \\cdot \\vec x} \\right) \\cdot \\vec I More info under http://en.wikipedia.org/wiki/Quaternion Examples -------- >>> mymat = eye(3) >>> myVector = r_[1,0,0] >>> quats = array([[0,0, sin(0.1)],[0, sin(0.2), 0]]) >>> quat.rotate_vector(myVector, quats) array([[ 0.98006658, 0.19866933, 0. ], [ 0.92106099, 0. , -0.38941834]]) >>> quat.rotate_vector(mymat, [0, 0, sin(0.1)]) array([[ 0.98006658, 0.19866933, 0. ], [-0.19866933, 0.98006658, 0. ], [ 0. , 0. , 1. ]]) ''' vector = np.atleast_2d(vector) qvector = np.hstack((np.zeros((vector.shape[0],1)), vector)) vRotated = quat.q_mult(q, quat.q_mult(qvector, quat.q_inv(q))) vRotated = vRotated[:,1:] if min(vRotated.shape)==1: vRotated = vRotated.ravel() return vRotated
[docs]def target2orient(target, orient_type='quat'): ''' Converts a target vector into a corresponding orientation. Useful for targeting devices, such as eyes, cameras, or missile trackers. Based on the assumption, that in the reference orientation, the targeting device points forward. Parameters ---------- target : array (3,) or (N,3) Input vector orient_type : string Has to be one the following: - Fick ... Rz * Ry - nautical ... same as "Fick" - Helmholtz ... Ry * Rz - quat ... quaternion Returns ------- orientation : array (3,) or (N,3) Corresponding orientation For rotation matrices, same sequence as the matrices [deg]. For quaternions, the quaternion vector. Note that the last column of the sequence angles, and the first column of the quaterion, will always be zero, because a rotation about the line-of-sight has no effect. Example ------- >>> a = [3,3,0] >>> b = [5., 0, 5] >>> skinematics.vector.target2orient(a) [ 0. 0. 0.38268343] >>> skinematics.vector.target2orient([a,b]) [[ 0. 0. 0.38268343] [ 0. -0.38268343 0. ]] >>> skinematics.vector.target2orient(a, orient_type='nautical') [ 45. -0. 0.] ''' if orient_type == 'quat': orientation = q_shortest_rotation([1,0,0], target) elif orient_type =='Fick' or orient_type =='nautical': n = np.atleast_2d(normalize(target)) theta = np.arctan2(n[:,1], n[:,0]) phi = -np.arcsin(n[:,2]) orientation = np.column_stack((theta, phi, np.zeros_like(theta))) orientation = np.rad2deg(orientation) elif orient_type == 'Helmholtz': n = np.atleast_2d(normalize(target)) phi = -np.arctan2(n[:,2], n[:,0]) theta = np.arcsin(n[:,1]) orientation = np.column_stack((phi, theta, np.zeros_like(theta))) orientation = np.rad2deg(orientation) else: raise ValueError('Input parameter {0} not known'.format(orientation)) # For vector input, return a vector: if orientation.shape[0] == 1: orientation = orientation.ravel() return orientation
if __name__=='__main__': a = [3,3,0] b = [0, 1, 0] normalized = normalize(a) print(normalized) normalized = normalize(np.cross(a,a)) print(normalized)