Quaternions¶
Note that all these functions work with single quaternions and quaternion vectors, as well as with arrays containing these.
Quaternion class¶
quat.Quaternion
… Quaternion class, with multiplication, division, and inversion.
Functions for working with quaternions¶
quat.q_conj()
… Conjugate quaternionquat.q_inv()
… Quaternion inversionquat.q_mult()
… Quaternion multiplicationquat.q_scalar()
… Extract the scalar part from a quaternionquat.q_vector()
… Extract the vector part from a quaternionquat.unit_q()
… Extend a quaternion vector to a unit quaternion.
Conversion routines¶
quat.calc_angvel()
… Calculates the velocity in space from quaternionsquat.calc_quat()
… Calculate orientation from a starting orientation and angular velocity.quat.convert()
… Convert quaternion to corresponding rotation matrix or Gibbs vectorquat.deg2quat()
… Convert number or axis angles to quaternion valuesquat.quat2deg()
… Convert quaternions to corresponding axis anglequat.quat2seq()
… Convert quaternions to corresponding rotation angles
Details¶
Functions for working with quaternions. Note that all the functions also work on arrays, and can deal with full quaternions as well as with quaternion vectors.
- class quat.Quaternion(inData, inType='vector')[source]¶
Quaternion class, with multiplication, division, and inversion. A Quaternion can be created from vectors, rotation matrices, or from Fick-angles, Helmholtz-angles, or Euler angles ( in deg). It provides
operator overloading for mult, div, and inv.
indexing
access to the data, in the attribute * values * .
- Parameters:
inData (np.ndarray) –
Contains the data in one of the following formats:
vector : (3 x n) or (4 x n) array, containing the quaternion values
- rotmatarray, shape (3,3) or (N,9)
single rotation matrix, or matrix with rotation-matrix elements.
- Fick(3 x n) array, containing (psi, phi, theta) rotations about
the (1,2,3) axes [deg] (Fick sequence)
- Helmholtz(3 x n) array, containing (psi, phi, theta) rotations about
the (1,2,3) axes [deg] (Helmholtz sequence)
- Euler(3 x n) array, containing (alpha, beta, gamma) rotations about
the (3,1,3) axes [deg] (Euler sequence)
inType (string) – Specifies the type of the input and has to have one of the following values ‘vector’[Default], ‘rotmat’, ‘Fick’, ‘Helmholtz’, ‘Euler’
Attribute¶
- values(4 x n) array
quaternion values
Method¶
inv() : Inverse of the quaterion
export(to=’rotmat’) : Export to one of the following formats: ‘rotmat’, ‘Euler’, ‘Fick’, ‘Helmholtz’
Note
\[\begin{split}\vec {q}_{Euler} = \left[ {\begin{array}{*{20}{c}} {\cos \frac{\alpha }{2}*\cos \frac{\beta }{2}*\cos \frac{\gamma }{2} - \sin \frac{\alpha }{2}\cos \frac{\beta }{2}\sin \frac{\gamma }{2}} \\ {\cos \frac{\alpha }{2}*\sin \frac{\beta }{2}*\cos \frac{\gamma }{2} + \sin \frac{\alpha }{2}\sin \frac{\beta }{2}\sin \frac{\gamma }{2}} \\ {\cos \frac{\alpha }{2}*\sin \frac{\beta }{2}*\sin \frac{\gamma }{2} - \sin \frac{\alpha }{2}\sin \frac{\beta }{2}\cos \frac{\gamma }{2}} \\ {\cos \frac{\alpha }{2}*\cos \frac{\beta }{2}*\sin \frac{\gamma }{2} + \sin \frac{\alpha }{2}\cos \frac{\beta }{2}\cos \frac{\gamma }{2}} \end{array}} \right]\end{split}\]\[\begin{split}\vec {q}_{Fick} = \left[ {\begin{array}{*{20}{c}} {\cos \frac{\psi }{2}*\cos \frac{\phi }{2}*\cos \frac{\theta }{2} + \sin \frac{\psi }{2}\sin \frac{\phi }{2}\sin \frac{\theta }{2}} \\ {\sin \frac{\psi }{2}*\cos \frac{\phi }{2}*\cos \frac{\theta }{2} - \cos \frac{\psi }{2}\sin \frac{\phi }{2}\sin \frac{\theta }{2}} \\ {\cos \frac{\psi }{2}*\sin \frac{\phi }{2}*\cos \frac{\theta }{2} + \sin \frac{\psi }{2}\cos \frac{\phi }{2}\sin \frac{\theta }{2}} \\ {\cos \frac{\psi }{2}*\cos \frac{\phi }{2}*\sin \frac{\theta }{2} - \sin \frac{\psi }{2}\sin \frac{\phi }{2}\cos \frac{\theta }{2}} \end{array}} \right]\end{split}\]\[\begin{split}\vec {q}_{Helmholtz} = \left[ {\begin{array}{*{20}{c}} {\cos \frac{\psi }{2}*\cos \frac{\phi }{2}*\cos \frac{\theta }{2} - \sin \frac{\psi }{2}\sin \frac{\phi }{2}\sin \frac{\theta }{2}} \\ {\sin \frac{\psi }{2}*\cos \frac{\phi }{2}*\cos \frac{\theta }{2} + \cos \frac{\psi }{2}\sin \frac{\phi }{2}\sin \frac{\theta }{2}} \\ {\cos \frac{\psi }{2}*\sin \frac{\phi }{2}*\cos \frac{\theta }{2} + \sin \frac{\psi }{2}\cos \frac{\phi }{2}\sin \frac{\theta }{2}} \\ {\cos \frac{\psi }{2}*\cos \frac{\phi }{2}*\sin \frac{\theta }{2} - \sin \frac{\psi }{2}\sin \frac{\phi }{2}\cos \frac{\theta }{2}} \end{array}} \right]\end{split}\]Examples
>>> q = Quaternion(array([[0,0,0.1], [0,0,0.2], [0,0,0.5]])) >>> p = Quaternion(array([0,0,0.2])) >>> fick = Quaternion( array([[0,0,10], [0,10,10]]), 'Fick') >>> combined = p * q >>> divided = q / p >>> extracted = q[1:2] >>> len(q) >>> data = q.values >>> 2 >>> inv(q)
- export(to='rotmat')[source]¶
Conversion to other formats. May be slow for “Fick”, “Helmholtz”, and “Euler”.
- Parameters:
to (string) –
content of returned values
’rotmat’ : rotation matrices (default), each flattened to a 9-dim vector
’Euler’ : Euler angles
’Fick’ : Fick angles
’Helmholtz’ : Helmholtz angles
’vector’ : vector part of the quaternion
- Return type:
ndarray, with the specified content
Examples
>>> q = Quaternion([0,0.2,0.1]) >>> rm = q.export() >>> fick = q.export('Fick')
- quat.calc_angvel(q, rate=1, winSize=5, order=2)[source]¶
Take a quaternion, and convert it into the corresponding angular velocity
- Parameters:
q (array, shape (N,[3,4])) – unit quaternion vectors.
rate (float) – sampling rate (in [Hz])
winSize (integer) – window size for the calculation of the velocity. Has to be odd.
order (integer) – Order of polynomial used by savgol to calculate the first derivative
- Returns:
angvel – angular velocity [rad/s].
- Return type:
array, shape (3,) or (N,3)
Notes
The angular velocity is given by
\[\omega = 2 * \frac{dq}{dt} \circ q^{-1}\]Examples
>>> rate = 1000 >>> t = np.arange(0,10,1/rate) >>> x = 0.1 * np.sin(t) >>> y = 0.2 * np.sin(t) >>> z = np.zeros_like(t) array([[ 0.20000029, 0.40000057, 0. ], [ 0.19999989, 0.39999978, 0. ], [ 0.19999951, 0.39999901, 0. ]]) .......
- quat.calc_quat(omega, q0, rate, CStype)[source]¶
Take an angular velocity (in rad/s), and convert it into the corresponding orientation quaternion.
- Parameters:
omega (array, shape (3,) or (N,3)) – angular velocity [rad/s].
q0 (array (3,)) – vector-part of quaternion (!!)
rate (float) – sampling rate (in [Hz])
CStype (string) – coordinate_system, space-fixed (“sf”) or body_fixed (“bf”)
- Returns:
quats – unit quaternion vectors.
- Return type:
array, shape (N,4)
Notes
The output has the same length as the input. As a consequence, the last velocity vector is ignored.
For angular velocity with respect to space (“sf”), the orientation is given by
\[q(t) = \Delta q(t_n) \circ \Delta q(t_{n-1}) \circ ... \circ \Delta q(t_2) \circ \Delta q(t_1) \circ q(t_0)\]\[\Delta \vec{q_i} = \vec{n(t)}\sin (\frac{\Delta \phi (t_i)}{2}) = \frac{\vec \omega (t_i)}{\left| {\vec \omega (t_i)} \right|}\sin \left( \frac{\left| {\vec \omega ({t_i})} \right|\Delta t}{2} \right)\]For angular velocity with respect to the body (“bf”), the sequence of quaternions is inverted.
Take care that you choose a high enough sampling rate!
Examples
>>> v0 = np.r_[0., 0., 100.] * np.pi/180. >>> omega = np.tile(v0, (1000,1)) >>> rate = 100 >>> out = quat.calc_quat(omega, [0., 0., 0.], rate, 'sf') array([[ 1. , 0. , 0. , 0. ], [ 0.99996192, 0. , 0. , 0.00872654], [ 0.9998477 , 0. , 0. , 0.01745241], ..., [-0.74895572, 0. , 0. , 0.66262005], [-0.75470958, 0. , 0. , 0.65605903], [-0.76040597, 0. , 0. , 0.64944805]])
- quat.convert(quat, to='rotmat')[source]¶
Calculate the rotation matrix corresponding to the quaternion. If “inQuat” contains more than one quaternion, the matrix is flattened (to facilitate the work with rows of quaternions), and can be restored to matrix form by “reshaping” the resulting rows into a (3,3) shape.
- Parameters:
inQuat (array_like, shape ([3,4],) or (N,[3,4])) – quaternions or quaternion vectors
to (string) –
Has to be one of the following:
rotmat : rotation matrix
Gibbs : Gibbs vector
- Returns:
rotMat
- Return type:
corresponding rotation matrix/matrices (flattened)
Notes
\[\begin{split}{\bf{R}} = \left( {\begin{array}{*{20}{c}} {q_0^2 + q_1^2 - q_2^2 - q_3^2}&{2({q_1}{q_2} - {q_0}{q_3})}&{2({q_1}{q_3} + {q_0}{q_2})}\\ {2({q_1}{q_2} + {q_0}{q_3})}&{q_0^2 - q_1^2 + q_2^2 - q_3^2}&{2({q_2}{q_3} - {q_0}{q_1})}\\ {2({q_1}{q_3} - {q_0}{q_2})}&{2({q_2}{q_3} + {q_0}{q_1})}&{q_0^2 - q_1^2 - q_2^2 + q_3^2} \\ \end{array}} \right)\end{split}\]More info under http://en.wikipedia.org/wiki/Quaternion
Examples
>>> r = quat.convert([0, 0, 0.1], to='rotmat') >>> r.shape (1, 9) >>> r.reshape((3,3)) array([[ 0.98 , -0.19899749, 0. ], [ 0.19899749, 0.98 , 0. ], [ 0. , 0. , 1. ]])
- quat.deg2quat(inDeg)[source]¶
Convert axis-angles or plain degree into the corresponding quaternion values. Can be used with a plain number or with an axis angle.
- Parameters:
inDeg (float or (N,3)) – quaternion magnitude or quaternion vectors.
- Returns:
outQuat – number or quaternion vector.
- Return type:
float or array (N,3)
Notes
\[| \vec{q} | = sin(\theta/2)\]More info under http://en.wikipedia.org/wiki/Quaternion
Examples
>>> quat.deg2quat(array([[10,20,30], [20,30,40]])) array([[ 0.08715574, 0.17364818, 0.25881905], [ 0.17364818, 0.25881905, 0.34202014]])
>>> quat.deg2quat(10) 0.087155742747658166
- quat.q_conj(q)[source]¶
Conjugate quaternion
- Parameters:
q (array_like, shape ([3,4],) or (N,[3/4])) – quaternion or quaternion vectors
- Returns:
qconj
- Return type:
conjugate quaternion(s)
Examples
>>> quat.q_conj([0,0,0.1]) array([ 0.99498744, -0. , -0. , -0.1 ])
>>> quat.q_conj([[cos(0.1),0,0,sin(0.1)], >>> [cos(0.2), 0, sin(0.2), 0]]) array([[ 0.99500417, -0. , -0. , -0.09983342], [ 0.98006658, -0. , -0.19866933, -0. ]])
- quat.q_inv(q)[source]¶
Quaternion inversion
- Parameters:
q (array_like, shape ([3,4],) or (N,[3/4])) – quaternion or quaternion vectors
- Returns:
qinv
- Return type:
inverse quaternion(s)
Notes
\[q^{-1} = \frac{q_0 - \vec{q}}{|q|^2}\]More info under http://en.wikipedia.org/wiki/Quaternion
Examples
>>> quat.q_inv([0,0,0.1]) array([-0., -0., -0.1])
>>> quat.q_inv([[cos(0.1),0,0,sin(0.1)], >>> [cos(0.2),0,sin(0.2),0]]) array([[ 0.99500417, -0. , -0. , -0.09983342], [ 0.98006658, -0. , -0.19866933, -0. ]])
- quat.q_mult(p, q)[source]¶
Quaternion multiplication: Calculates the product of two quaternions r = p * q If one of both of the quaterions have only three columns, the scalar component is calculated such that the length of the quaternion is one. The lengths of the quaternions have to match, or one of the two quaternions has to have the length one. If both p and q only have 3 components, the returned quaternion also only has 3 components (i.e. the quaternion vector)
- Parameters:
p (array_like, shape ([3,4],) or (N,[3,4])) – quaternions or quaternion vectors
q (array_like, shape ([3,4],) or (N,[3,4])) – quaternions or quaternion vectors
- Returns:
r – p and q are contain quaternion vectors).
- Return type:
quaternion or quaternion vector (if both
Notes
\[q \circ p = \sum\limits_{i=0}^3 {q_i I_i} * \sum\limits_{j=0}^3 \ {p_j I_j} = (q_0 p_0 - \vec{q} \cdot \vec{p}) + (q_0 \vec{p} + p_0 \ \vec{q} + \vec{q} \times \vec{p}) \cdot \vec{I}\]More info under http://en.wikipedia.org/wiki/Quaternion
Examples
>>> p = [cos(0.2), 0, 0, sin(0.2)] >>> q = [[0, 0, 0.1], >>> [0, 0.1, 0]] >>> r = quat.q_mult(p,q)
- quat.q_scalar(inQuat)[source]¶
Extract the quaternion scalar from a full quaternion.
- Parameters:
inQuat (array_like, shape ([3,4],) or (N,[3,4])) – quaternions or quaternion vectors.
- Returns:
vect – Corresponding quaternion scalar. If the input is only the quaternion-vector, the scalar part for a unit quaternion is calculated and returned.
- Return type:
array, shape (1,) or (N,1)
Notes
More info under http://en.wikipedia.org/wiki/Quaternion
Examples
>>> quat.q_scalar([[np.cos(0.2), 0, 0, np.sin(0.2)],[np.cos(0.1), 0, np.sin(0.1), 0]]) array([ 0.98006658, 0.99500417])
- quat.q_vector(inQuat)[source]¶
Extract the quaternion vector from a full quaternion.
- Parameters:
inQuat (array_like, shape ([3,4],) or (N,[3,4])) – quaternions or quaternion vectors.
- Returns:
vect – corresponding quaternion vectors
- Return type:
array, shape (3,) or (N,3)
Notes
More info under http://en.wikipedia.org/wiki/Quaternion
Examples
>>> quat.q_vector([[np.cos(0.2), 0, 0, np.sin(0.2)],[cos(0.1), 0, np.sin(0.1), 0]]) array([[ 0. , 0. , 0.19866933], [ 0. , 0.09983342, 0. ]])
- quat.quat2deg(inQuat)[source]¶
Calculate the axis-angle corresponding to a given quaternion.
- Parameters:
inQuat (float, or array_like, shape ([3/4],) or (N,[3/4])) – quaternion(s) or quaternion vector(s)
- Returns:
axAng – float, or shape (3,) or (N,3)
- Return type:
corresponding axis angle(s)
Notes
\[| \vec{q} | = sin(\theta/2)\]More info under http://en.wikipedia.org/wiki/Quaternion
Examples
>>> quat.quat2deg(0.1) array([ 11.47834095])
>>> quat.quat2deg([0.1, 0.1, 0]) array([ 11.47834095, 11.47834095, 0. ])
>>> quat.quat2deg([cos(0.1), 0, sin(0.1), 0]) array([ 0. , 11.4591559, 0. ])
- quat.quat2seq(quats, seq='nautical')[source]¶
This function takes a quaternion, and calculates the corresponding angles for sequenctial rotations.
- Parameters:
quats (ndarray, nx4) – input quaternions
seq (string) –
Has to be one the following:
Euler … Rz * Rx * Rz
Fick … Rz * Ry * Rx
nautical … same as “Fick”
Helmholtz … Ry * Rz * Rx
- Returns:
sequence – corresponding angles [deg] same sequence as in the rotation matrices
- Return type:
ndarray, nx3
Examples
>>> quat.quat2seq([0,0,0.1]) array([[ 11.47834095, -0. , 0. ]])
>>> quaternions = [[0,0,0.1], [0,0.2,0]] skin.quat.quat2seq(quaternions) array([[ 11.47834095, -0. , 0. ], [ 0. , 23.07391807, 0. ]])
>>> skin.quat.quat2seq(quaternions, 'nautical') array([[ 11.47834095, -0. , 0. ], [ 0. , 23.07391807, 0. ]])
>>> skin.quat.quat2seq(quaternions, 'Euler') array([[ 11.47834095, 0. , 0. ], [ 90. , 23.07391807, -90. ]])
- quat.unit_q(inData)[source]¶
Utility function, which turns a quaternion vector into a unit quaternion. If the input is already a full quaternion, the output equals the input.
- Parameters:
inData (array_like, shape (3,) or (N,3)) – quaternions or quaternion vectors
- Returns:
quats – corresponding unit quaternions.
- Return type:
array, shape (4,) or (N,4)
Notes
More info under http://en.wikipedia.org/wiki/Quaternion
Examples
>>> quats = array([[0,0, sin(0.1)],[0, sin(0.2), 0]]) >>> quat.unit_q(quats) array([[ 0.99500417, 0. , 0. , 0.09983342], [ 0.98006658, 0. , 0.19866933, 0. ]])