Quaternions¶
Note that all these functions work with single quaternions and quaternion vectors, as well as with arrays containing these.
Quaternion class¶
quat.Quaternion
… Quaternion class
Functions for working with quaternions¶
quat.q_conj()
… Conjugate quaternionquat.q_inv()
… Quaternion inversionquat.q_mult()
… Quaternion multiplicationquat.q_scalar()
… Extract the scalar part from a quaternionquat.q_vector()
… Extract the vector part from a quaternionquat.unit_q()
… Extend a quaternion vector to a unit quaternion.
Conversion routines¶
quat.calc_angvel()
… Calculates the velocity in space from quaternionsquat.calc_quat()
… Calculate orientation from a starting orientation and angular velocity.quat.convert()
… Convert quaternion to corresponding rotation matrix or Gibbs vectorquat.deg2quat()
… Convert number or axis angles to quaternion valuesquat.quat2deg()
… Convert quaternions to corresponding axis anglequat.quat2seq()
… Convert quaternions to corresponding rotation angles
Details¶
Functions for working with quaternions. Note that all the functions also work on arrays, and can deal with full quaternions as well as with quaternion vectors.
A “Quaternion” class is defined, with
operator overloading for mult, div, and inv.
indexing
-
class
quat.
Quaternion
(inData, inType='vector')[source]¶ Quaternion class, with multiplication, division, and inversion. A Quaternion can be created from vectors, rotation matrices, or from Fick-angles, Helmholtz-angles, or Euler angles (in deg). It provides
operator overloading for mult, div, and inv.
indexing
access to the data, in the attribute values.
- Parameters
inData (ndarray) –
Contains the data in one of the following formats:
vector : (3 x n) or (4 x n) array, containing the quaternion values
- rotmatarray, shape (3,3) or (N,9)
single rotation matrix, or matrix with rotation-matrix elements.
- Fick(3 x n) array, containing (psi, phi, theta) rotations about
the (1,2,3) axes [deg] (Fick sequence)
- Helmholtz(3 x n) array, containing (psi, phi, theta) rotations about
the (1,2,3) axes [deg] (Helmholtz sequence)
- Euler(3 x n) array, containing (alpha, beta, gamma) rotations about
the (3,1,3) axes [deg] (Euler sequence)
inType (string) – Specifies the type of the input and has to have one of the following values ‘vector’[Default], ‘rotmat’, ‘Fick’, ‘Helmholtz’, ‘Euler’
-
values
¶ quaternion values
- Type
(4 x n) array
-
export
(to='rotmat')[source]¶ Export to one of the following formats: ‘rotmat’, ‘Euler’, ‘Fick’, ‘Helmholtz’
Notes
\[\begin{split}\vec {q}_{Euler} = \left[ {\begin{array}{*{20}{c}} {\cos \frac{\alpha }{2}*\cos \frac{\beta }{2}*\cos \frac{\gamma }{2} - \sin \frac{\alpha }{2}\cos \frac{\beta }{2}\sin \frac{\gamma }{2}} \\ {\cos \frac{\alpha }{2}*\sin \frac{\beta }{2}*\cos \frac{\gamma }{2} + \sin \frac{\alpha }{2}\sin \frac{\beta }{2}\sin \frac{\gamma }{2}} \\ {\cos \frac{\alpha }{2}*\sin \frac{\beta }{2}*\sin \frac{\gamma }{2} - \sin \frac{\alpha }{2}\sin \frac{\beta }{2}\cos \frac{\gamma }{2}} \\ {\cos \frac{\alpha }{2}*\cos \frac{\beta }{2}*\sin \frac{\gamma }{2} + \sin \frac{\alpha }{2}\cos \frac{\beta }{2}\cos \frac{\gamma }{2}} \end{array}} \right]\end{split}\]\[\begin{split}\vec {q}_{Fick} = \left[ {\begin{array}{*{20}{c}} {\cos \frac{\psi }{2}*\cos \frac{\phi }{2}*\cos \frac{\theta }{2} + \sin \frac{\psi }{2}\sin \frac{\phi }{2}\sin \frac{\theta }{2}} \\ {\sin \frac{\psi }{2}*\cos \frac{\phi }{2}*\cos \frac{\theta }{2} - \cos \frac{\psi }{2}\sin \frac{\phi }{2}\sin \frac{\theta }{2}} \\ {\cos \frac{\psi }{2}*\sin \frac{\phi }{2}*\cos \frac{\theta }{2} + \sin \frac{\psi }{2}\cos \frac{\phi }{2}\sin \frac{\theta }{2}} \\ {\cos \frac{\psi }{2}*\cos \frac{\phi }{2}*\sin \frac{\theta }{2} - \sin \frac{\psi }{2}\sin \frac{\phi }{2}\cos \frac{\theta }{2}} \end{array}} \right]\end{split}\]\[\begin{split}\vec {q}_{Helmholtz} = \left[ {\begin{array}{*{20}{c}} {\cos \frac{\psi }{2}*\cos \frac{\phi }{2}*\cos \frac{\theta }{2} - \sin \frac{\psi }{2}\sin \frac{\phi }{2}\sin \frac{\theta }{2}} \\ {\sin \frac{\psi }{2}*\cos \frac{\phi }{2}*\cos \frac{\theta }{2} + \cos \frac{\psi }{2}\sin \frac{\phi }{2}\sin \frac{\theta }{2}} \\ {\cos \frac{\psi }{2}*\sin \frac{\phi }{2}*\cos \frac{\theta }{2} + \sin \frac{\psi }{2}\cos \frac{\phi }{2}\sin \frac{\theta }{2}} \\ {\cos \frac{\psi }{2}*\cos \frac{\phi }{2}*\sin \frac{\theta }{2} - \sin \frac{\psi }{2}\sin \frac{\phi }{2}\cos \frac{\theta }{2}} \end{array}} \right]\end{split}\]Examples
>>> q = Quaternion(array([[0,0,0.1], [0,0,0.2], [0,0,0.5]])) >>> p = Quaternion(array([0,0,0.2])) >>> fick = Quaternion( array([[0,0,10], [0,10,10]]), 'Fick') >>> combined = p * q >>> divided = q / p >>> extracted = q[1:2] >>> len(q) >>> data = q.values >>> 2 >>> inv(q)
-
export
(to='rotmat')[source]¶ Conversion to other formats. May be slow for “Fick”, “Helmholtz”, and “Euler”.
- Parameters
to (string) –
content of returned values
’rotmat’ : rotation matrices (default), each flattened to a 9-dim vector
’Euler’ : Euler angles
’Fick’ : Fick angles
’Helmholtz’ : Helmholtz angles
’vector’ : vector part of the quaternion
- Returns
- Return type
ndarray, with the specified content
Examples
>>> q = Quaternion([0,0.2,0.1]) >>> rm = q.export() >>> fick = q.export('Fick')
-
quat.
calc_angvel
(q, rate=1, winSize=5, order=2)[source]¶ Take a quaternion, and convert it into the corresponding angular velocity
- Parameters
q (array, shape (N,[3,4])) – unit quaternion vectors.
rate (float) – sampling rate (in [Hz])
winSize (integer) – window size for the calculation of the velocity. Has to be odd.
order (integer) – Order of polynomial used by savgol to calculate the first derivative
- Returns
angvel – angular velocity [rad/s].
- Return type
array, shape (3,) or (N,3)
Notes
The angular velocity is given by
\[\omega = 2 * \frac{dq}{dt} \circ q^{-1}\]Examples
>>> rate = 1000 >>> t = np.arange(0,10,1/rate) >>> x = 0.1 * np.sin(t) >>> y = 0.2 * np.sin(t) >>> z = np.zeros_like(t) array([[ 0.20000029, 0.40000057, 0. ], [ 0.19999989, 0.39999978, 0. ], [ 0.19999951, 0.39999901, 0. ]]) .......
-
quat.
calc_quat
(omega, q0, rate, CStype)[source]¶ Take an angular velocity (in rad/s), and convert it into the corresponding orientation quaternion.
- Parameters
omega (array, shape (3,) or (N,3)) – angular velocity [rad/s].
q0 (array (3,)) – vector-part of quaternion (!!)
rate (float) – sampling rate (in [Hz])
CStype (string) – coordinate_system, space-fixed (“sf”) or body_fixed (“bf”)
- Returns
quats – unit quaternion vectors.
- Return type
array, shape (N,4)
Notes
The output has the same length as the input. As a consequence, the last velocity vector is ignored.
For angular velocity with respect to space (“sf”), the orientation is given by
\[q(t) = \Delta q(t_n) \circ \Delta q(t_{n-1}) \circ ... \circ \Delta q(t_2) \circ \Delta q(t_1) \circ q(t_0)\]\[\Delta \vec{q_i} = \vec{n(t)}\sin (\frac{\Delta \phi (t_i)}{2}) = \frac{\vec \omega (t_i)}{\left| {\vec \omega (t_i)} \right|}\sin \left( \frac{\left| {\vec \omega ({t_i})} \right|\Delta t}{2} \right)\]For angular velocity with respect to the body (“bf”), the sequence of quaternions is inverted.
Take care that you choose a high enough sampling rate!
Examples
>>> v0 = np.r_[0., 0., 100.] * np.pi/180. >>> omega = np.tile(v0, (1000,1)) >>> rate = 100 >>> out = quat.calc_quat(omega, [0., 0., 0.], rate, 'sf') array([[ 1. , 0. , 0. , 0. ], [ 0.99996192, 0. , 0. , 0.00872654], [ 0.9998477 , 0. , 0. , 0.01745241], ..., [-0.74895572, 0. , 0. , 0.66262005], [-0.75470958, 0. , 0. , 0.65605903], [-0.76040597, 0. , 0. , 0.64944805]])
-
quat.
convert
(quat, to='rotmat')[source]¶ Calculate the rotation matrix corresponding to the quaternion. If “inQuat” contains more than one quaternion, the matrix is flattened (to facilitate the work with rows of quaternions), and can be restored to matrix form by “reshaping” the resulting rows into a (3,3) shape.
- Parameters
inQuat (array_like, shape ([3,4],) or (N,[3,4])) – quaternions or quaternion vectors
to (string) –
Has to be one of the following:
rotmat : rotation matrix
Gibbs : Gibbs vector
- Returns
rotMat
- Return type
corresponding rotation matrix/matrices (flattened)
Notes
\[\begin{split}{\bf{R}} = \left( {\begin{array}{*{20}{c}} {q_0^2 + q_1^2 - q_2^2 - q_3^2}&{2({q_1}{q_2} - {q_0}{q_3})}&{2({q_1}{q_3} + {q_0}{q_2})}\\ {2({q_1}{q_2} + {q_0}{q_3})}&{q_0^2 - q_1^2 + q_2^2 - q_3^2}&{2({q_2}{q_3} - {q_0}{q_1})}\\ {2({q_1}{q_3} - {q_0}{q_2})}&{2({q_2}{q_3} + {q_0}{q_1})}&{q_0^2 - q_1^2 - q_2^2 + q_3^2} \\ \end{array}} \right)\end{split}\]More info under http://en.wikipedia.org/wiki/Quaternion
Examples
>>> r = quat.convert([0, 0, 0.1], to='rotmat') >>> r.shape (1, 9) >>> r.reshape((3,3)) array([[ 0.98 , -0.19899749, 0. ], [ 0.19899749, 0.98 , 0. ], [ 0. , 0. , 1. ]])
-
quat.
deg2quat
(inDeg)[source]¶ Convert axis-angles or plain degree into the corresponding quaternion values. Can be used with a plain number or with an axis angle.
- Parameters
inDeg (float or (N,3)) – quaternion magnitude or quaternion vectors.
- Returns
outQuat – number or quaternion vector.
- Return type
float or array (N,3)
Notes
\[| \vec{q} | = sin(\theta/2)\]More info under http://en.wikipedia.org/wiki/Quaternion
Examples
>>> quat.deg2quat(array([[10,20,30], [20,30,40]])) array([[ 0.08715574, 0.17364818, 0.25881905], [ 0.17364818, 0.25881905, 0.34202014]])
>>> quat.deg2quat(10) 0.087155742747658166
-
quat.
q_conj
(q)[source]¶ Conjugate quaternion
- Parameters
q (array_like, shape ([3,4],) or (N,[3/4])) – quaternion or quaternion vectors
- Returns
qconj
- Return type
conjugate quaternion(s)
Examples
>>> quat.q_conj([0,0,0.1]) array([ 0.99498744, -0. , -0. , -0.1 ])
>>> quat.q_conj([[cos(0.1),0,0,sin(0.1)], >>> [cos(0.2), 0, sin(0.2), 0]]) array([[ 0.99500417, -0. , -0. , -0.09983342], [ 0.98006658, -0. , -0.19866933, -0. ]])
-
quat.
q_inv
(q)[source]¶ Quaternion inversion
- Parameters
q (array_like, shape ([3,4],) or (N,[3/4])) – quaternion or quaternion vectors
- Returns
qinv
- Return type
inverse quaternion(s)
Notes
\[q^{-1} = \frac{q_0 - \vec{q}}{|q|^2}\]More info under http://en.wikipedia.org/wiki/Quaternion
Examples
>>> quat.q_inv([0,0,0.1]) array([-0., -0., -0.1])
>>> quat.q_inv([[cos(0.1),0,0,sin(0.1)], >>> [cos(0.2),0,sin(0.2),0]]) array([[ 0.99500417, -0. , -0. , -0.09983342], [ 0.98006658, -0. , -0.19866933, -0. ]])
-
quat.
q_mult
(p, q)[source]¶ Quaternion multiplication: Calculates the product of two quaternions r = p * q If one of both of the quaterions have only three columns, the scalar component is calculated such that the length of the quaternion is one. The lengths of the quaternions have to match, or one of the two quaternions has to have the length one. If both p and q only have 3 components, the returned quaternion also only has 3 components (i.e. the quaternion vector)
- Parameters
p (array_like, shape ([3,4],) or (N,[3,4])) – quaternions or quaternion vectors
q (array_like, shape ([3,4],) or (N,[3,4])) – quaternions or quaternion vectors
- Returns
r – p and q are contain quaternion vectors).
- Return type
quaternion or quaternion vector (if both
Notes
\[q \circ p = \sum\limits_{i=0}^3 {q_i I_i} * \sum\limits_{j=0}^3 \ {p_j I_j} = (q_0 p_0 - \vec{q} \cdot \vec{p}) + (q_0 \vec{p} + p_0 \ \vec{q} + \vec{q} \times \vec{p}) \cdot \vec{I}\]More info under http://en.wikipedia.org/wiki/Quaternion
Examples
>>> p = [cos(0.2), 0, 0, sin(0.2)] >>> q = [[0, 0, 0.1], >>> [0, 0.1, 0]] >>> r = quat.q_mult(p,q)
-
quat.
q_scalar
(inQuat)[source]¶ Extract the quaternion scalar from a full quaternion.
- Parameters
inQuat (array_like, shape ([3,4],) or (N,[3,4])) – quaternions or quaternion vectors.
- Returns
vect – Corresponding quaternion scalar. If the input is only the quaternion-vector, the scalar part for a unit quaternion is calculated and returned.
- Return type
array, shape (1,) or (N,1)
Notes
More info under http://en.wikipedia.org/wiki/Quaternion
Examples
>>> quat.q_scalar([[np.cos(0.2), 0, 0, np.sin(0.2)],[np.cos(0.1), 0, np.sin(0.1), 0]]) array([ 0.98006658, 0.99500417])
-
quat.
q_vector
(inQuat)[source]¶ Extract the quaternion vector from a full quaternion.
- Parameters
inQuat (array_like, shape ([3,4],) or (N,[3,4])) – quaternions or quaternion vectors.
- Returns
vect – corresponding quaternion vectors
- Return type
array, shape (3,) or (N,3)
Notes
More info under http://en.wikipedia.org/wiki/Quaternion
Examples
>>> quat.q_vector([[np.cos(0.2), 0, 0, np.sin(0.2)],[cos(0.1), 0, np.sin(0.1), 0]]) array([[ 0. , 0. , 0.19866933], [ 0. , 0.09983342, 0. ]])
-
quat.
quat2deg
(inQuat)[source]¶ Calculate the axis-angle corresponding to a given quaternion.
- Parameters
inQuat (float, or array_like, shape ([3/4],) or (N,[3/4])) – quaternion(s) or quaternion vector(s)
- Returns
axAng – float, or shape (3,) or (N,3)
- Return type
corresponding axis angle(s)
Notes
\[| \vec{q} | = sin(\theta/2)\]More info under http://en.wikipedia.org/wiki/Quaternion
Examples
>>> quat.quat2deg(0.1) array([ 11.47834095])
>>> quat.quat2deg([0.1, 0.1, 0]) array([ 11.47834095, 11.47834095, 0. ])
>>> quat.quat2deg([cos(0.1), 0, sin(0.1), 0]) array([ 0. , 11.4591559, 0. ])
-
quat.
quat2seq
(quats, seq='nautical')[source]¶ This function takes a quaternion, and calculates the corresponding angles for sequenctial rotations.
- Parameters
quats (ndarray, nx4) – input quaternions
seq (string) –
Has to be one the following:
Euler … Rz * Rx * Rz
Fick … Rz * Ry * Rx
nautical … same as “Fick”
Helmholtz … Ry * Rz * Rx
- Returns
sequence – corresponding angles [deg] same sequence as in the rotation matrices
- Return type
ndarray, nx3
Examples
>>> quat.quat2seq([0,0,0.1]) array([[ 11.47834095, -0. , 0. ]])
>>> quaternions = [[0,0,0.1], [0,0.2,0]] skin.quat.quat2seq(quaternions) array([[ 11.47834095, -0. , 0. ], [ 0. , 23.07391807, 0. ]])
>>> skin.quat.quat2seq(quaternions, 'nautical') array([[ 11.47834095, -0. , 0. ], [ 0. , 23.07391807, 0. ]])
>>> skin.quat.quat2seq(quaternions, 'Euler') array([[ 11.47834095, 0. , 0. ], [ 90. , 23.07391807, -90. ]])
-
quat.
unit_q
(inData)[source]¶ Utility function, which turns a quaternion vector into a unit quaternion. If the input is already a full quaternion, the output equals the input.
- Parameters
inData (array_like, shape (3,) or (N,3)) – quaternions or quaternion vectors
- Returns
quats – corresponding unit quaternions.
- Return type
array, shape (4,) or (N,4)
Notes
More info under http://en.wikipedia.org/wiki/Quaternion
Examples
>>> quats = array([[0,0, sin(0.1)],[0, sin(0.2), 0]]) >>> quat.unit_q(quats) array([[ 0.99500417, 0. , 0. , 0.09983342], [ 0.98006658, 0. , 0.19866933, 0. ]])