"""
This file contains the abstract base class "IMU_Base" for analyzing movements
recordings with inertial measurement units (IMUs), as well as functions and
classes for the evaluation of IMU-data..
The advantage of using an "abstract base class" is that it allows to write
code that is independent of the IMU-sensor. All IMUs provide acceleration
and angular velocities, and most of them also the direction of the local
magnetic field. The specifics of each sensor are hidden in the sensor-object
(specifically, in the "get_data" method which has to be implemented once
for each sensor). Initialization of a sensor object includes a number of
activities:
- Reading in the data.
- Making acceleration, angular_velocity etc. accessible in a sensor-
independent way
- Calculating duration, totalSamples, etc.
- Calculating orientation (expressed as "quat"), with the method
specified in "q_type"
"""
#Author: Thomas Haslwanter
import os
import sys
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
import scipy
from scipy import constants # for "g"
if int(scipy.__version__.split('.')[1]) >= 12:
from scipy.integrate import cumulative_trapezoid, simpson
else:
from scipy.integrate import cumtrapz as cumulative_trapezoid
from scipy.integrate import simps as simpson
# The following construct is required since I want to run the module as a script
# inside the skinematics-directory
file_dir = os.path.dirname(__file__)
if file_dir not in sys.path:
sys.path.insert(0, file_dir)
import quat, vector, misc, rotmat
# For deprecation warnings
# import deprecation
import warnings
# For the definition of the abstract base class IMU_Base
import abc
[docs]
class IMU_Base(metaclass=abc.ABCMeta):
"""
Abstract BaseClass for working with working with inertial measurement units (IMUs)
A concrete class must be instantiated, which implements "get_data".
(See example below.)
Attributes:
acc (Nx3 array) : 3D linear acceleration [m/s**2]
dataType (string) : Type of data (commonly float)
duration (float) : Duration of recording [sec]
mag (Nx3 array) : 3D orientation of local magnectic field
omega (Nx3 array) : 3D angular velocity [rad/s]
pos (Nx3 array) : 3D position
pos_init (3-vector) : Initial position. default is np.ones(3)
quat (Nx4 array) : 3D orientation
q_type (string) : Method of calculation for orientation quaternion
rate (float) : Sampling rate [Hz]
R_init (3x3 array) : Rotation matrix defining the initial orientation.
Default is np.eye(3)
source (str) : Name of data-file
totalSamples (int) : Number of samples
vel (Nx3 array) : 3D velocity
Parameters
----------
inFile : string
path- and file-name of data file / input source
inData : dictionary
The following fields are required:
acc : (N x 3) array
Linear acceleration [m/s^2], in the x-, y-, and z-direction
omega : (N x 3) array
Angular velocity [rad/s], about the x-, y-, and z-axis
[mag] : (N x 3) array (optional)
Local magnetic field, in the x-, y-, and z-direction
rate: float
sample rate [Hz]
Examples
--------
>>> # Set the in-file, initial sensor orientation
>>> in_file = r'tests/data/data_xsens.txt'
>>> initial_orientation = np.array([[1,0,0],
>>> [0,0,-1],
>>> [0,1,0]])
>>>
>>> # Choose a sensor
>>> from skinematics.sensors.xsens import XSens
>>> from skinematics.sensors.manual import MyOwnSensor
>>>
>>> # Only read in the data
>>> data = XSens(in_file, q_type=None)
>>>
>>> # Read in and evaluate the data
>>> sensor = XSens(in_file=in_file, R_init=initial_orientation)
>>>
>>> # By default, the orientation quaternion gets automatically calculated,
>>> # using the option "analytical"
>>> q_analytical = sensor.quat
>>>
>>> # Automatic re-calculation of orientation if "q_type" is changed
>>> sensor.set_qtype('madgwick')
>>> q_Madgwick = sensor.quat
>>>
>>> sensor.set_qtype('kalman')
>>> q_Kalman = sensor.quat
>>>
>>> # Demonstrate how to fill up a sensor manually
>>> in_data = {'rate':sensor.rate,
>>> 'acc': sensor.acc,
>>> 'omega':sensor.omega,
>>> 'mag':sensor.mag}
>>> my_sensor = MyOwnSensor(in_file='My own 123 sensor.', in_data=in_data)
"""
[docs]
@abc.abstractmethod
def get_data(self, in_file=None, in_data:float|None|np.ndarray=None):
"""Retrieve "rate", "acc", "omega", "mag" from the input source
and set the corresponding values of "self".
With some sensors, "rate" has to be provided, and is taken from "in_data".
"""
def __init__(self, in_file = None,
q_type='analytical', R_init = np.eye(3),
calculate_position=True, pos_init = np.zeros(3),
in_data = None ):
"""Initialize an IMU-object.
Note that this includes a number of activities:
- Read in the data (which have to be either in "in_file" or in "in_data")
- Make acceleration, angular_velocity etc. accessible, in a
sensor-independent way
- Calculates duration, totalSamples, etc
- If q_type==None, data are only read in; otherwise, 3-D orientation is
calculated with the method specified in "q_type", and stored in the
property "quat".
- If position==True, the method "calc_position" is automatically called,
and the 3D position stored in the propery "pos". (Note that
if q_type==None, then "position" is set to "False".)
in_file : string
Location of infile / input
q_type : string
Determines how the orientation gets calculated:
- 'analytical' .... quaternion integration of angular velocity [default]
- 'kalman' ..... quaternion Kalman filter
- 'madgwick' ... gradient descent method, efficient
- 'mahony' .... formula from Mahony, as implemented by Madgwick
- 'None' ... data are only read in, no orientation calculated
R_init : 3x3 array
approximate alignment of sensor-CS with space-fixed CS
currently only used in "analytical"
calculate_position : Boolean
If "True", position is calculated, and stored in property "pos".
pos_init : (,3) vector
initial position
currently only used in "analytical"
in_data : dictionary
If the data are provided directly, not from a file
Also used to provide "rate" for "polulu" sensors.
"""
if in_data is None and in_file is None:
raise ValueError('Either in_data or in_file must be provided.')
elif in_file is None:
# Get the data from "in_data"
# In that case, "in_data"
# - must contain the fields ['acc', 'omega']
# - can contain the fields ['rate', 'mag']
# self.source is set to "None"
self._set_data(in_data)
else:
# Set rate, acc, omega, mag
# Note: this is implemented in the concrete class, implenented in
# the corresponding module in "sensors"
self.source = in_file
self.get_data(in_file, in_data)
# Set information not determined by the IMU-data
self.R_init = R_init
self.pos_init = pos_init
# Set the analysis method, and consolidate the object (see below)
# This also means calculating the orientation quaternion!!
self.set_qtype(q_type)
if q_type != None:
if calculate_position:
self.calc_position()
[docs]
def set_qtype(self, type_value):
"""Sets q_type, and automatically performs the relevant calculations.
q_type determines how the orientation is calculated.
If "q_type" is "None", no orientation gets calculated; otherwise,
the orientation calculation is performed with
"_calc_orientation", using the option "q_type".
It has to be one of the following values:
* analytical
* kalman
* madgwick
* mahony
* None
"""
allowed_values = ['analytical',
'kalman',
'madgwick',
'mahony',
None]
if type_value in allowed_values:
self.q_type = type_value
if type_value == None:
self.quat = None
else:
self._calc_orientation()
else:
raise ValueError('q_type must be one of the following: ' \
'{0}, not {1}'.format(allowed_values, value))
def _set_data(self, data):
# Set the properties of an IMU-object directly
if 'rate' not in data.keys():
print('Set the "rate" to the default value (100 Hz).')
data['rate'] = 100.0
self.rate = data['rate']
self.acc= data['acc']
self.omega = data['omega']
if 'mag' in data.keys():
self.mag = data['mag']
self.source = None
self._set_info()
def _calc_orientation(self):
"""
Calculate the current orientation
Parameters
----------
type : string
- 'analytical' .... quaternion integration of angular velocity
- 'kalman' ..... quaternion Kalman filter
- 'madgwick' ... gradient descent method, efficient
- 'mahony' .... formula from Mahony, as implemented by Madgwick
"""
initialPosition = np.r_[0,0,0]
method = self.q_type
if method == 'analytical':
(quaternion, position, velocity) = analytical(self.R_init,
self.omega,
initialPosition,
self.acc,
self.rate)
elif method == 'kalman':
self._checkRequirements()
quaternion = kalman(self.rate, self.acc, np.deg2rad(self.omega),
self.mag)
elif method == 'madgwick':
self._checkRequirements()
# Initialize object
AHRS = Madgwick(rate=self.rate, Beta=0.5) # previously: Beta=1.5
quaternion = np.zeros((self.totalSamples, 4))
# The "Update"-function uses angular velocity in radian/s, and only
# the directions of acceleration and magnetic field
Gyr = self.omega
Acc = vector.normalize(self.acc)
Mag = vector.normalize(self.mag)
#for t in range(len(time)):
for t in misc.progressbar(range(self.totalSamples),
'Calculating the Quaternions ', 25) :
AHRS.Update(Gyr[t], Acc[t], Mag[t])
quaternion[t] = AHRS.Quaternion
elif method == 'mahony':
self._checkRequirements()
# Initialize object
AHRS = Mahony(rate=np.float64(self.rate), Kp=0.4) # previously: Kp=0.5
quaternion = np.zeros((self.totalSamples, 4))
# The "Update"-function uses angular velocity in radian/s, and only
# the directions of acceleration and magnetic field
Gyr = self.omega
Acc = vector.normalize(self.acc)
Mag = vector.normalize(self.mag)
#for t in range(len(time)):
for t in misc.progressbar(range(self.totalSamples),
'Calculating the Quaternions ', 25) :
AHRS.Update(Gyr[t], Acc[t], Mag[t])
quaternion[t] = AHRS.Quaternion
else:
print('Unknown orientation type: {0}'.format(method))
return
self.quat = quaternion
[docs]
def calc_position(self):
"""Calculate the position, assuming that the orientation is already known."""
initialPosition = self.pos_init
# Acceleration, velocity, and position ----------------------------
# From q and the measured acceleration, get the \frac{d^2x}{dt^2}
g = constants.g
g_v = np.r_[0, 0, g]
accReSensor = self.acc - vector.rotate_vector(g_v, quat.q_inv(self.quat))
accReSpace = vector.rotate_vector(accReSensor, self.quat)
# Position and Velocity through integration, assuming 0-velocity at t=0
vel = np.nan*np.ones_like(accReSpace)
pos = np.nan*np.ones_like(accReSpace)
for ii in range(accReSpace.shape[1]):
vel[:, ii] = cumulative_trapezoid(accReSpace[:, ii],
dx=1. / np.float64(self.rate), initial=0)
pos[:, ii] = cumulative_trapezoid(vel[:, ii],
dx=1. / np.float64(self.rate), initial=initialPosition[ii])
self.vel = vel
self.pos = pos
def _checkRequirements(self):
"""Check if all the necessary variables are available."""
required = [ 'rate', 'acc', 'omega', 'mag' ]
for field in required:
if field not in vars(self):
print('Cannot find {0} in calc_orientation!'.format(field))
def _set_info(self):
"""Complete the information properties of that IMU"""
self.totalSamples = len(self.omega)
self.duration = np.float64(self.totalSamples) / self.rate # [sec]
self.dataType = str(self.omega.dtype)
[docs]
def analytical(R_initialOrientation=np.eye(3),
omega=np.zeros((5,3)),
initialPosition=np.zeros(3),
accMeasured=np.column_stack((np.zeros((5,2)), 9.81*np.ones(5))),
rate=100):
""" Reconstruct position and orientation with an analytical solution,
from angular velocity and linear acceleration.
Assumes a start in a stationary position. No compensation for drift.
Parameters
----------
R_initialOrientation: ndarray(3,3)
Rotation matrix describing the initial orientation of the sensor,
except a mis-orienation with respect to gravity
omega : ndarray(N,3)
Angular velocity, in [rad/s]
initialPosition : ndarray(3,)
initial Position, in [m]
accMeasured : ndarray(N,3)
Linear acceleration, in [m/s^2]
rate : float
sampling rate, in [Hz]
Returns
-------
q : ndarray(N,3)
Orientation, expressed as a quaternion vector
pos : ndarray(N,3)
Position in space [m]
vel : ndarray(N,3)
Velocity in space [m/s]
Example
-------
>>> q1, pos1 = analytical(R_initialOrientation, omega, initialPosition, acc, rate)
"""
if omega.ndim == 1:
raise ValueError('The input to "analytical" requires matrix inputs.')
# Transform recordings to angVel/acceleration in space --------------
# Orientation of \vec{g} with the sensor in the "R_initialOrientation"
g = constants.g
g0 = np.linalg.inv(R_initialOrientation).dot(np.r_[0,0,g])
# for the remaining deviation, assume the shortest rotation to there
q0 = vector.q_shortest_rotation(accMeasured[0], g0)
q_initial = rotmat.convert(R_initialOrientation, to='quat')
# combine the two, to form a reference orientation. Note that the sequence
# is very important!
q_ref = quat.q_mult(q_initial, q0)
# Calculate orientation q by "integrating" omega -----------------
q = quat.calc_quat(omega, q_ref, rate, 'bf')
# Acceleration, velocity, and position ----------------------------
# From q and the measured acceleration, get the \frac{d^2x}{dt^2}
g_v = np.r_[0, 0, g]
accReSensor = accMeasured - vector.rotate_vector(g_v, quat.q_inv(q))
accReSpace = vector.rotate_vector(accReSensor, q)
# Make the first position the reference position
q = quat.q_mult(q, quat.q_inv(q[0]))
# compensate for drift
#drift = np.mean(accReSpace, 0)
#accReSpace -= drift*0.7
# Position and Velocity through integration, assuming 0-velocity at t=0
vel = np.nan*np.ones_like(accReSpace)
pos = np.nan*np.ones_like(accReSpace)
for ii in range(accReSpace.shape[1]):
vel[:, ii] = cumulative_trapezoid(
accReSpace[:, ii], dx=1. / rate, initial=0)
pos[:, ii] = cumulative_trapezoid(
vel[:, ii], dx=1. / rate, initial=initialPosition[ii])
return (q, pos, vel)
[docs]
def kalman(rate, acc, omega, mag,
D = [0.4, 0.4, 0.4],
tau = [0.5, 0.5, 0.5],
Q_k = None,
R_k = None):
"""
Calclulate the orientation from IMU magnetometer data.
Parameters
----------
rate : float
sample rate [Hz]
acc : (N,3) ndarray
linear acceleration [m/sec^2]
omega : (N,3) ndarray
angular velocity [rad/sec]
mag : (N,3) ndarray
magnetic field orientation
D : (,3) ndarray
noise variance, for x/y/z [rad^2/sec^2]
parameter for tuning the filter; defaults from Yun et al.
can also be entered as list
tau : (,3) ndarray
time constant for the process model, for x/y/z [sec]
parameter for tuning the filter; defaults from Yun et al.
can also be entered as list
Q_k : None, or (7,7) ndarray
covariance matrix of process noises
parameter for tuning the filter
If set to "None", the defaults from Yun et al. are taken!
R_k : None, or (7,7) ndarray
covariance matrix of measurement noises
parameter for tuning the filter; defaults from Yun et al.
If set to "None", the defaults from Yun et al. are taken!
Returns
-------
qOut : (N,4) ndarray
unit quaternion, describing the orientation relativ to the coordinate
system spanned by the local magnetic field, and gravity
Notes
-----
Based on "Design, Implementation, and Experimental Results of a Quaternion-
Based Kalman Filter for Human Body Motion Tracking" Yun, X. and Bachman,
E.R., IEEE TRANSACTIONS ON ROBOTICS, VOL. 22, 1216-1227 (2006)
"""
numData = len(acc)
# Set parameters for Kalman Filter
tstep = 1./rate
# check input
assert len(tau) == 3
tau = np.array(tau)
# Initializations
x_k = np.zeros(7) # state vector
z_k = np.zeros(7) # measurement vector
z_k_pre = np.zeros(7)
P_k = np.eye(7) # error covariance matrix P_k
Phi_k = np.eye(7) # discrete state transition matrix Phi_k
for ii in range(3):
Phi_k[ii,ii] = np.exp(-tstep/tau[ii])
H_k = np.eye(7) # Identity matrix
D = np.r_[0.4, 0.4, 0.4] # [rad^2/sec^2]; from Yun, 2006
if Q_k is None:
# Set the default input, from Yun et al.
Q_k = np.zeros((7,7)) # process noise matrix Q_k
for ii in range(3):
Q_k[ii,ii] = D[ii]/(2*tau[ii]) * ( 1-np.exp(-2*tstep/tau[ii]) )
else:
# Check the shape of the input
assert Q_k.shape == (7,7)
# Evaluate measurement noise covariance matrix R_k
if R_k is None:
# Set the default input, from Yun et al.
r_angvel = 0.01; # [rad**2/sec**2]; from Yun, 2006
r_quats = 0.0001; # from Yun, 2006
r_ii = np.zeros(7)
for ii in range(3):
r_ii[ii] = r_angvel
for ii in range(4):
r_ii[ii+3] = r_quats
R_k = np.diag(r_ii)
else:
# Check the shape of the input
assert R_k.shape == (7,7)
# Calculation of orientation for every time step
qOut = np.zeros( (numData,4) )
for ii in range(numData):
accelVec = acc[ii,:]
magVec = mag[ii,:]
angvelVec = omega[ii,:]
z_k_pre = z_k.copy() # watch out: by default, Python passes the reference!!
# Evaluate quaternion based on acceleration and magnetic field data
accelVec_n = vector.normalize(accelVec)
magVec_hor = magVec - accelVec_n * (accelVec_n @ magVec)
magVec_n = vector.normalize(magVec_hor)
basisVectors = np.column_stack( [magVec_n,
np.cross(accelVec_n, magVec_n), accelVec_n] )
quatRef = quat.q_inv(rotmat.convert(basisVectors, to='quat')).ravel()
# Calculate Kalman Gain
# K_k = P_k * H_k.T * inv(H_k*P_k*H_k.T + R_k)
K_k = P_k @ np.linalg.inv(P_k + R_k)
# Update measurement vector z_k
z_k[:3] = angvelVec
z_k[3:] = quatRef
# Update state vector x_k
x_k += np.array( K_k@(z_k-z_k_pre) ).ravel()
# Evaluate discrete state transition matrix Phi_k
Delta = np.zeros((7,7))
Delta[3,:] = np.r_[-x_k[4], -x_k[5], -x_k[6], 0, -x_k[0], -x_k[1], -x_k[2]]
Delta[4,:] = np.r_[ x_k[3], -x_k[6], x_k[5], x_k[0], 0, x_k[2], -x_k[1]]
Delta[5,:] = np.r_[ x_k[6], x_k[3], -x_k[4], x_k[1], -x_k[2], 0, x_k[0]]
Delta[6,:] = np.r_[-x_k[5], x_k[4], x_k[3], x_k[2], x_k[1], -x_k[0], 0]
Delta *= tstep/2
Phi_k += Delta
# Update error covariance matrix
P_k = (np.eye(7) - K_k) @ P_k
# Projection of state
# 1) quaternions
x_k[3:] += tstep * 0.5 * quat.q_mult(x_k[3:], np.r_[0, x_k[:3]]).ravel()
x_k[3:] = vector.normalize( x_k[3:] )
# 2) angular velocities
x_k[:3] -= tstep * tau * x_k[:3]
qOut[ii,:] = x_k[3:]
# Projection of error covariance matrix
P_k = Phi_k @ P_k @ Phi_k.T + Q_k
# Make the first position the reference position
qOut = quat.q_mult(qOut, quat.q_inv(qOut[0]))
return qOut
[docs]
class Madgwick:
"""Madgwick's gradient descent filter.
Parameters
----------
rate : double
sample rate [Hz]
Beta : double
algorithm gain
Quaternion : array, shape (N,4)
output quaternion describing the Earth relative to the sensor
"""
def __init__(self, rate=256.0, Beta=1.0, Quaternion=[1,0,0,0]):
"""Initialization """
self.rate = rate
self.SamplePeriod = 1/self.rate
self.Beta = Beta
self.Quaternion = Quaternion
[docs]
def Update(self, Gyroscope, Accelerometer, Magnetometer):
"""Calculate the best quaternion to the given measurement values.
Parameters
----------
Gyroscope : array, shape (,3)
Angular velocity [rad/s]
Accelerometer : array, shape (,3)
Linear acceleration (Only the direction is used, so units don't matter.)
Magnetometer : array, shape (,3)
Orientation of local magenetic field.
(Again, only the direction is used, so units don't matter.)
"""
q = self.Quaternion; # short name local variable for readability
# Reference direction of Earth's magnetic field
h = vector.rotate_vector(Magnetometer, q)
b = np.hstack((0, np.sqrt(h[0]**2+h[1]**2), 0, h[2]))
# Gradient decent algorithm corrective step
F = [2*(q[1]*q[3] - q[0]*q[2]) - Accelerometer[0],
2*(q[0]*q[1] + q[2]*q[3]) - Accelerometer[1],
2*(0.5 - q[1]**2 - q[2]**2) - Accelerometer[2],
2*b[1]*(0.5 - q[2]**2 - q[3]**2) + 2*b[3]*(q[1]*q[3] - q[0]*q[2]) - Magnetometer[0],
2*b[1]*(q[1]*q[2] - q[0]*q[3]) + 2*b[3]*(q[0]*q[1] + q[2]*q[3]) - Magnetometer[1],
2*b[1]*(q[0]*q[2] + q[1]*q[3]) + 2*b[3]*(0.5 - q[1]**2 - q[2]**2) - Magnetometer[2]]
J = np.array([
[-2*q[2], 2*q[3], -2*q[0], 2*q[1]],
[ 2*q[1], 2*q[0], 2*q[3], 2*q[2]],
[0, -4*q[1], -4*q[2], 0],
[-2*b[3]*q[2], 2*b[3]*q[3], -4*b[1]*q[2]-2*b[3]*q[0], -4*b[1]*q[3]+2*b[3]*q[1]],
[-2*b[1]*q[3]+2*b[3]*q[1], 2*b[1]*q[2]+2*b[3]*q[0], 2*b[1]*q[1]+2*b[3]*q[3], -2*b[1]*q[0]+2*b[3]*q[2]],
[ 2*b[1]*q[2], 2*b[1]*q[3]-4*b[3]*q[1], 2*b[1]*q[0]-4*b[3]*q[2], 2*b[1]*q[1]]])
step = J.T.dot(F)
step = vector.normalize(step) # normalise step magnitude
# Compute rate of change of quaternion
qDot = 0.5 * quat.q_mult(q, np.hstack([0, Gyroscope])) - self.Beta * step
# Integrate to yield quaternion
q = q + qDot * self.SamplePeriod
self.Quaternion = vector.normalize(q).flatten()
[docs]
class Mahony:
"""Madgwick's implementation of Mayhony's AHRS algorithm
Parameters
----------
rate : double
sample rate [Hz]
Kp : algorithm proportional gain
Ki : algorithm integral gain
Quaternion : output quaternion describing the Earth relative to the sensor
"""
def __init__(self, rate=256.0, Kp=1.0, Ki=0, Quaternion=[1,0,0,0]):
"""Initialization """
self.rate = rate
self.SamplePeriod = 1/self.rate
self.Kp = Kp
self.Ki = Ki
self.Quaternion = Quaternion
self._eInt = [0, 0, 0] # integral error
[docs]
def Update(self, Gyroscope, Accelerometer, Magnetometer):
"""Calculate the best quaternion to the given measurement values.
Parameters
----------
Gyroscope : array, shape (,3)
Angular velocity [rad/s]
Accelerometer : array, shape (,3)
Linear acceleration (Only the direction is used, so units don't
matter.)
Magnetometer : array, shape (,3)
Orientation of local magenetic field.
(Again, only the direction is used, so units don't matter.)
"""
q = self.Quaternion; # short name local variable for readability
# Reference direction of Earth's magnetic field
h = vector.rotate_vector(Magnetometer, q)
b = np.hstack((0, np.sqrt(h[0]**2+h[1]**2), 0, h[2]))
# Estimated direction of gravity and magnetic field
v = np.array([
2*(q[1]*q[3] - q[0]*q[2]),
2*(q[0]*q[1] + q[2]*q[3]),
q[0]**2 - q[1]**2 - q[2]**2 + q[3]**2])
w = np.array([
2*b[1]*(0.5 - q[2]**2 - q[3]**2) + 2*b[3]*(q[1]*q[3] - q[0]*q[2]),
2*b[1]*(q[1]*q[2] - q[0]*q[3]) + 2*b[3]*(q[0]*q[1] + q[2]*q[3]),
2*b[1]*(q[0]*q[2] + q[1]*q[3]) + 2*b[3]*(0.5 - q[1]**2 - q[2]**2)])
# Error is sum of cross product between estimated direction and measured
# direction of fields
e = np.cross(Accelerometer, v) + np.cross(Magnetometer, w)
if self.Ki > 0:
self._eInt += e * self.SamplePeriod
else:
self._eInt = np.array([0, 0, 0], dtype=np.float64)
# Apply feedback terms
Gyroscope += self.Kp * e + self.Ki * self._eInt;
# Compute rate of change of quaternion
qDot = 0.5 * quat.q_mult(q, np.hstack([0, Gyroscope])).flatten()
# Integrate to yield quaternion
q += qDot * self.SamplePeriod
self.Quaternion = vector.normalize(q)
if __name__ == '__main__':
"""
in_file = r'../others/skinematics-invalid-sqrt.txt'
import pandas as pd
data = pd.read_csv(in_file, delimiter='\t')
omega = data.filter(regex='Gyr*').values
acc = data.filter(regex='Acc*').values
analytical(omega = omega, accMeasured=acc)
"""
from sensors.xsens import XSens
in_file = r'../tests/data/data_xsens.txt'
initial_orientation = np.array([ [1,0,0],
[0,0,-1],
[0,1,0]])
#in_file = r'tests/data/data_xsens2.txt'
#initial_orientation = np.array([[0,0,-1],
#[1, 0, 0],
#[0,-1,0]])
initial_position = np.r_[0,0,0]
sensor = XSens(in_file=in_file, R_init=initial_orientation,
pos_init=initial_position)
# By default, the orientation quaternion gets automatically calculated,
# using "analytical"
q_analytical = sensor.quat
def show_result(imu_data):
"Dummy function, to simplify the visualization"
fig, axs = plt.subplots(3,1)
axs[0].plot(imu_data.omega)
axs[0].set_ylabel('Omega')
axs[0].set_title(imu_data.q_type)
axs[1].plot(imu_data.acc)
axs[1].set_ylabel('Acc')
axs[2].plot(imu_data.quat[:,1:])
axs[2].set_ylabel('Quat')
plt.show()
show_result(sensor)
# Automatic re-calculation of orientation if "q_type" is changed
sensor.set_qtype('madgwick')
q_Madgwick = sensor.quat
show_result(sensor)
sensor.set_qtype('kalman')
q_Kalman = sensor.quat
show_result(sensor)
print('Done')