Source code for imus

"""
This file contains the abstract base class "IMU_Base" for analyzing movements
recordings with inertial measurement units (IMUs), as well as functions and
classes for the evaluation of IMU-data..

The advantage of using an "abstract base class" is that it allows to write
code that is independent of the IMU-sensor. All IMUs provide acceleration
and angular velocities, and most of them also the direction of the local
magnetic field. The specifics of each sensor are hidden in the sensor-object
(specifically, in the "get_data" method which has to be implemented once
for each sensor). Initialization of a sensor object includes a number of
activities:

        - Reading in the data.
        - Making acceleration, angular_velocity etc. accessible in a sensor-
          independent way
        - Calculating duration, totalSamples, etc.
        - Calculating orientation (expressed as "quat"), with the method
          specified in "q_type"

"""

#Author: Thomas Haslwanter

import os
import sys
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
import scipy
from scipy import constants     # for "g"
if int(scipy.__version__.split('.')[1]) >= 12:
    from scipy.integrate import cumulative_trapezoid, simpson
else:
    from scipy.integrate import cumtrapz as cumulative_trapezoid
    from scipy.integrate import simps as simpson

# The following construct is required since I want to run the module as a script
# inside the skinematics-directory

file_dir = os.path.dirname(__file__)
if file_dir not in sys.path:
    sys.path.insert(0, file_dir)

import quat, vector, misc, rotmat

# For deprecation warnings
# import deprecation
import warnings

# For the definition of the abstract base class IMU_Base
import abc

[docs] class IMU_Base(metaclass=abc.ABCMeta): """ Abstract BaseClass for working with working with inertial measurement units (IMUs) A concrete class must be instantiated, which implements "get_data". (See example below.) Attributes: acc (Nx3 array) : 3D linear acceleration [m/s**2] dataType (string) : Type of data (commonly float) duration (float) : Duration of recording [sec] mag (Nx3 array) : 3D orientation of local magnectic field omega (Nx3 array) : 3D angular velocity [rad/s] pos (Nx3 array) : 3D position pos_init (3-vector) : Initial position. default is np.ones(3) quat (Nx4 array) : 3D orientation q_type (string) : Method of calculation for orientation quaternion rate (float) : Sampling rate [Hz] R_init (3x3 array) : Rotation matrix defining the initial orientation. Default is np.eye(3) source (str) : Name of data-file totalSamples (int) : Number of samples vel (Nx3 array) : 3D velocity Parameters ---------- inFile : string path- and file-name of data file / input source inData : dictionary The following fields are required: acc : (N x 3) array Linear acceleration [m/s^2], in the x-, y-, and z-direction omega : (N x 3) array Angular velocity [rad/s], about the x-, y-, and z-axis [mag] : (N x 3) array (optional) Local magnetic field, in the x-, y-, and z-direction rate: float sample rate [Hz] Examples -------- >>> # Set the in-file, initial sensor orientation >>> in_file = r'tests/data/data_xsens.txt' >>> initial_orientation = np.array([[1,0,0], >>> [0,0,-1], >>> [0,1,0]]) >>> >>> # Choose a sensor >>> from skinematics.sensors.xsens import XSens >>> from skinematics.sensors.manual import MyOwnSensor >>> >>> # Only read in the data >>> data = XSens(in_file, q_type=None) >>> >>> # Read in and evaluate the data >>> sensor = XSens(in_file=in_file, R_init=initial_orientation) >>> >>> # By default, the orientation quaternion gets automatically calculated, >>> # using the option "analytical" >>> q_analytical = sensor.quat >>> >>> # Automatic re-calculation of orientation if "q_type" is changed >>> sensor.set_qtype('madgwick') >>> q_Madgwick = sensor.quat >>> >>> sensor.set_qtype('kalman') >>> q_Kalman = sensor.quat >>> >>> # Demonstrate how to fill up a sensor manually >>> in_data = {'rate':sensor.rate, >>> 'acc': sensor.acc, >>> 'omega':sensor.omega, >>> 'mag':sensor.mag} >>> my_sensor = MyOwnSensor(in_file='My own 123 sensor.', in_data=in_data) """
[docs] @abc.abstractmethod def get_data(self, in_file=None, in_data:float|None|np.ndarray=None): """Retrieve "rate", "acc", "omega", "mag" from the input source and set the corresponding values of "self". With some sensors, "rate" has to be provided, and is taken from "in_data". """
def __init__(self, in_file = None, q_type='analytical', R_init = np.eye(3), calculate_position=True, pos_init = np.zeros(3), in_data = None ): """Initialize an IMU-object. Note that this includes a number of activities: - Read in the data (which have to be either in "in_file" or in "in_data") - Make acceleration, angular_velocity etc. accessible, in a sensor-independent way - Calculates duration, totalSamples, etc - If q_type==None, data are only read in; otherwise, 3-D orientation is calculated with the method specified in "q_type", and stored in the property "quat". - If position==True, the method "calc_position" is automatically called, and the 3D position stored in the propery "pos". (Note that if q_type==None, then "position" is set to "False".) in_file : string Location of infile / input q_type : string Determines how the orientation gets calculated: - 'analytical' .... quaternion integration of angular velocity [default] - 'kalman' ..... quaternion Kalman filter - 'madgwick' ... gradient descent method, efficient - 'mahony' .... formula from Mahony, as implemented by Madgwick - 'None' ... data are only read in, no orientation calculated R_init : 3x3 array approximate alignment of sensor-CS with space-fixed CS currently only used in "analytical" calculate_position : Boolean If "True", position is calculated, and stored in property "pos". pos_init : (,3) vector initial position currently only used in "analytical" in_data : dictionary If the data are provided directly, not from a file Also used to provide "rate" for "polulu" sensors. """ if in_data is None and in_file is None: raise ValueError('Either in_data or in_file must be provided.') elif in_file is None: # Get the data from "in_data" # In that case, "in_data" # - must contain the fields ['acc', 'omega'] # - can contain the fields ['rate', 'mag'] # self.source is set to "None" self._set_data(in_data) else: # Set rate, acc, omega, mag # Note: this is implemented in the concrete class, implenented in # the corresponding module in "sensors" self.source = in_file self.get_data(in_file, in_data) # Set information not determined by the IMU-data self.R_init = R_init self.pos_init = pos_init # Set the analysis method, and consolidate the object (see below) # This also means calculating the orientation quaternion!! self.set_qtype(q_type) if q_type != None: if calculate_position: self.calc_position()
[docs] def set_qtype(self, type_value): """Sets q_type, and automatically performs the relevant calculations. q_type determines how the orientation is calculated. If "q_type" is "None", no orientation gets calculated; otherwise, the orientation calculation is performed with "_calc_orientation", using the option "q_type". It has to be one of the following values: * analytical * kalman * madgwick * mahony * None """ allowed_values = ['analytical', 'kalman', 'madgwick', 'mahony', None] if type_value in allowed_values: self.q_type = type_value if type_value == None: self.quat = None else: self._calc_orientation() else: raise ValueError('q_type must be one of the following: ' \ '{0}, not {1}'.format(allowed_values, value))
def _set_data(self, data): # Set the properties of an IMU-object directly if 'rate' not in data.keys(): print('Set the "rate" to the default value (100 Hz).') data['rate'] = 100.0 self.rate = data['rate'] self.acc= data['acc'] self.omega = data['omega'] if 'mag' in data.keys(): self.mag = data['mag'] self.source = None self._set_info() def _calc_orientation(self): """ Calculate the current orientation Parameters ---------- type : string - 'analytical' .... quaternion integration of angular velocity - 'kalman' ..... quaternion Kalman filter - 'madgwick' ... gradient descent method, efficient - 'mahony' .... formula from Mahony, as implemented by Madgwick """ initialPosition = np.r_[0,0,0] method = self.q_type if method == 'analytical': (quaternion, position, velocity) = analytical(self.R_init, self.omega, initialPosition, self.acc, self.rate) elif method == 'kalman': self._checkRequirements() quaternion = kalman(self.rate, self.acc, np.deg2rad(self.omega), self.mag) elif method == 'madgwick': self._checkRequirements() # Initialize object AHRS = Madgwick(rate=self.rate, Beta=0.5) # previously: Beta=1.5 quaternion = np.zeros((self.totalSamples, 4)) # The "Update"-function uses angular velocity in radian/s, and only # the directions of acceleration and magnetic field Gyr = self.omega Acc = vector.normalize(self.acc) Mag = vector.normalize(self.mag) #for t in range(len(time)): for t in misc.progressbar(range(self.totalSamples), 'Calculating the Quaternions ', 25) : AHRS.Update(Gyr[t], Acc[t], Mag[t]) quaternion[t] = AHRS.Quaternion elif method == 'mahony': self._checkRequirements() # Initialize object AHRS = Mahony(rate=np.float64(self.rate), Kp=0.4) # previously: Kp=0.5 quaternion = np.zeros((self.totalSamples, 4)) # The "Update"-function uses angular velocity in radian/s, and only # the directions of acceleration and magnetic field Gyr = self.omega Acc = vector.normalize(self.acc) Mag = vector.normalize(self.mag) #for t in range(len(time)): for t in misc.progressbar(range(self.totalSamples), 'Calculating the Quaternions ', 25) : AHRS.Update(Gyr[t], Acc[t], Mag[t]) quaternion[t] = AHRS.Quaternion else: print('Unknown orientation type: {0}'.format(method)) return self.quat = quaternion
[docs] def calc_position(self): """Calculate the position, assuming that the orientation is already known.""" initialPosition = self.pos_init # Acceleration, velocity, and position ---------------------------- # From q and the measured acceleration, get the \frac{d^2x}{dt^2} g = constants.g g_v = np.r_[0, 0, g] accReSensor = self.acc - vector.rotate_vector(g_v, quat.q_inv(self.quat)) accReSpace = vector.rotate_vector(accReSensor, self.quat) # Position and Velocity through integration, assuming 0-velocity at t=0 vel = np.nan*np.ones_like(accReSpace) pos = np.nan*np.ones_like(accReSpace) for ii in range(accReSpace.shape[1]): vel[:, ii] = cumulative_trapezoid(accReSpace[:, ii], dx=1. / np.float64(self.rate), initial=0) pos[:, ii] = cumulative_trapezoid(vel[:, ii], dx=1. / np.float64(self.rate), initial=initialPosition[ii]) self.vel = vel self.pos = pos
def _checkRequirements(self): """Check if all the necessary variables are available.""" required = [ 'rate', 'acc', 'omega', 'mag' ] for field in required: if field not in vars(self): print('Cannot find {0} in calc_orientation!'.format(field)) def _set_info(self): """Complete the information properties of that IMU""" self.totalSamples = len(self.omega) self.duration = np.float64(self.totalSamples) / self.rate # [sec] self.dataType = str(self.omega.dtype)
[docs] def analytical(R_initialOrientation=np.eye(3), omega=np.zeros((5,3)), initialPosition=np.zeros(3), accMeasured=np.column_stack((np.zeros((5,2)), 9.81*np.ones(5))), rate=100): """ Reconstruct position and orientation with an analytical solution, from angular velocity and linear acceleration. Assumes a start in a stationary position. No compensation for drift. Parameters ---------- R_initialOrientation: ndarray(3,3) Rotation matrix describing the initial orientation of the sensor, except a mis-orienation with respect to gravity omega : ndarray(N,3) Angular velocity, in [rad/s] initialPosition : ndarray(3,) initial Position, in [m] accMeasured : ndarray(N,3) Linear acceleration, in [m/s^2] rate : float sampling rate, in [Hz] Returns ------- q : ndarray(N,3) Orientation, expressed as a quaternion vector pos : ndarray(N,3) Position in space [m] vel : ndarray(N,3) Velocity in space [m/s] Example ------- >>> q1, pos1 = analytical(R_initialOrientation, omega, initialPosition, acc, rate) """ if omega.ndim == 1: raise ValueError('The input to "analytical" requires matrix inputs.') # Transform recordings to angVel/acceleration in space -------------- # Orientation of \vec{g} with the sensor in the "R_initialOrientation" g = constants.g g0 = np.linalg.inv(R_initialOrientation).dot(np.r_[0,0,g]) # for the remaining deviation, assume the shortest rotation to there q0 = vector.q_shortest_rotation(accMeasured[0], g0) q_initial = rotmat.convert(R_initialOrientation, to='quat') # combine the two, to form a reference orientation. Note that the sequence # is very important! q_ref = quat.q_mult(q_initial, q0) # Calculate orientation q by "integrating" omega ----------------- q = quat.calc_quat(omega, q_ref, rate, 'bf') # Acceleration, velocity, and position ---------------------------- # From q and the measured acceleration, get the \frac{d^2x}{dt^2} g_v = np.r_[0, 0, g] accReSensor = accMeasured - vector.rotate_vector(g_v, quat.q_inv(q)) accReSpace = vector.rotate_vector(accReSensor, q) # Make the first position the reference position q = quat.q_mult(q, quat.q_inv(q[0])) # compensate for drift #drift = np.mean(accReSpace, 0) #accReSpace -= drift*0.7 # Position and Velocity through integration, assuming 0-velocity at t=0 vel = np.nan*np.ones_like(accReSpace) pos = np.nan*np.ones_like(accReSpace) for ii in range(accReSpace.shape[1]): vel[:, ii] = cumulative_trapezoid( accReSpace[:, ii], dx=1. / rate, initial=0) pos[:, ii] = cumulative_trapezoid( vel[:, ii], dx=1. / rate, initial=initialPosition[ii]) return (q, pos, vel)
[docs] def kalman(rate, acc, omega, mag, D = [0.4, 0.4, 0.4], tau = [0.5, 0.5, 0.5], Q_k = None, R_k = None): """ Calclulate the orientation from IMU magnetometer data. Parameters ---------- rate : float sample rate [Hz] acc : (N,3) ndarray linear acceleration [m/sec^2] omega : (N,3) ndarray angular velocity [rad/sec] mag : (N,3) ndarray magnetic field orientation D : (,3) ndarray noise variance, for x/y/z [rad^2/sec^2] parameter for tuning the filter; defaults from Yun et al. can also be entered as list tau : (,3) ndarray time constant for the process model, for x/y/z [sec] parameter for tuning the filter; defaults from Yun et al. can also be entered as list Q_k : None, or (7,7) ndarray covariance matrix of process noises parameter for tuning the filter If set to "None", the defaults from Yun et al. are taken! R_k : None, or (7,7) ndarray covariance matrix of measurement noises parameter for tuning the filter; defaults from Yun et al. If set to "None", the defaults from Yun et al. are taken! Returns ------- qOut : (N,4) ndarray unit quaternion, describing the orientation relativ to the coordinate system spanned by the local magnetic field, and gravity Notes ----- Based on "Design, Implementation, and Experimental Results of a Quaternion- Based Kalman Filter for Human Body Motion Tracking" Yun, X. and Bachman, E.R., IEEE TRANSACTIONS ON ROBOTICS, VOL. 22, 1216-1227 (2006) """ numData = len(acc) # Set parameters for Kalman Filter tstep = 1./rate # check input assert len(tau) == 3 tau = np.array(tau) # Initializations x_k = np.zeros(7) # state vector z_k = np.zeros(7) # measurement vector z_k_pre = np.zeros(7) P_k = np.eye(7) # error covariance matrix P_k Phi_k = np.eye(7) # discrete state transition matrix Phi_k for ii in range(3): Phi_k[ii,ii] = np.exp(-tstep/tau[ii]) H_k = np.eye(7) # Identity matrix D = np.r_[0.4, 0.4, 0.4] # [rad^2/sec^2]; from Yun, 2006 if Q_k is None: # Set the default input, from Yun et al. Q_k = np.zeros((7,7)) # process noise matrix Q_k for ii in range(3): Q_k[ii,ii] = D[ii]/(2*tau[ii]) * ( 1-np.exp(-2*tstep/tau[ii]) ) else: # Check the shape of the input assert Q_k.shape == (7,7) # Evaluate measurement noise covariance matrix R_k if R_k is None: # Set the default input, from Yun et al. r_angvel = 0.01; # [rad**2/sec**2]; from Yun, 2006 r_quats = 0.0001; # from Yun, 2006 r_ii = np.zeros(7) for ii in range(3): r_ii[ii] = r_angvel for ii in range(4): r_ii[ii+3] = r_quats R_k = np.diag(r_ii) else: # Check the shape of the input assert R_k.shape == (7,7) # Calculation of orientation for every time step qOut = np.zeros( (numData,4) ) for ii in range(numData): accelVec = acc[ii,:] magVec = mag[ii,:] angvelVec = omega[ii,:] z_k_pre = z_k.copy() # watch out: by default, Python passes the reference!! # Evaluate quaternion based on acceleration and magnetic field data accelVec_n = vector.normalize(accelVec) magVec_hor = magVec - accelVec_n * (accelVec_n @ magVec) magVec_n = vector.normalize(magVec_hor) basisVectors = np.column_stack( [magVec_n, np.cross(accelVec_n, magVec_n), accelVec_n] ) quatRef = quat.q_inv(rotmat.convert(basisVectors, to='quat')).ravel() # Calculate Kalman Gain # K_k = P_k * H_k.T * inv(H_k*P_k*H_k.T + R_k) K_k = P_k @ np.linalg.inv(P_k + R_k) # Update measurement vector z_k z_k[:3] = angvelVec z_k[3:] = quatRef # Update state vector x_k x_k += np.array( K_k@(z_k-z_k_pre) ).ravel() # Evaluate discrete state transition matrix Phi_k Delta = np.zeros((7,7)) Delta[3,:] = np.r_[-x_k[4], -x_k[5], -x_k[6], 0, -x_k[0], -x_k[1], -x_k[2]] Delta[4,:] = np.r_[ x_k[3], -x_k[6], x_k[5], x_k[0], 0, x_k[2], -x_k[1]] Delta[5,:] = np.r_[ x_k[6], x_k[3], -x_k[4], x_k[1], -x_k[2], 0, x_k[0]] Delta[6,:] = np.r_[-x_k[5], x_k[4], x_k[3], x_k[2], x_k[1], -x_k[0], 0] Delta *= tstep/2 Phi_k += Delta # Update error covariance matrix P_k = (np.eye(7) - K_k) @ P_k # Projection of state # 1) quaternions x_k[3:] += tstep * 0.5 * quat.q_mult(x_k[3:], np.r_[0, x_k[:3]]).ravel() x_k[3:] = vector.normalize( x_k[3:] ) # 2) angular velocities x_k[:3] -= tstep * tau * x_k[:3] qOut[ii,:] = x_k[3:] # Projection of error covariance matrix P_k = Phi_k @ P_k @ Phi_k.T + Q_k # Make the first position the reference position qOut = quat.q_mult(qOut, quat.q_inv(qOut[0])) return qOut
[docs] class Madgwick: """Madgwick's gradient descent filter. Parameters ---------- rate : double sample rate [Hz] Beta : double algorithm gain Quaternion : array, shape (N,4) output quaternion describing the Earth relative to the sensor """ def __init__(self, rate=256.0, Beta=1.0, Quaternion=[1,0,0,0]): """Initialization """ self.rate = rate self.SamplePeriod = 1/self.rate self.Beta = Beta self.Quaternion = Quaternion
[docs] def Update(self, Gyroscope, Accelerometer, Magnetometer): """Calculate the best quaternion to the given measurement values. Parameters ---------- Gyroscope : array, shape (,3) Angular velocity [rad/s] Accelerometer : array, shape (,3) Linear acceleration (Only the direction is used, so units don't matter.) Magnetometer : array, shape (,3) Orientation of local magenetic field. (Again, only the direction is used, so units don't matter.) """ q = self.Quaternion; # short name local variable for readability # Reference direction of Earth's magnetic field h = vector.rotate_vector(Magnetometer, q) b = np.hstack((0, np.sqrt(h[0]**2+h[1]**2), 0, h[2])) # Gradient decent algorithm corrective step F = [2*(q[1]*q[3] - q[0]*q[2]) - Accelerometer[0], 2*(q[0]*q[1] + q[2]*q[3]) - Accelerometer[1], 2*(0.5 - q[1]**2 - q[2]**2) - Accelerometer[2], 2*b[1]*(0.5 - q[2]**2 - q[3]**2) + 2*b[3]*(q[1]*q[3] - q[0]*q[2]) - Magnetometer[0], 2*b[1]*(q[1]*q[2] - q[0]*q[3]) + 2*b[3]*(q[0]*q[1] + q[2]*q[3]) - Magnetometer[1], 2*b[1]*(q[0]*q[2] + q[1]*q[3]) + 2*b[3]*(0.5 - q[1]**2 - q[2]**2) - Magnetometer[2]] J = np.array([ [-2*q[2], 2*q[3], -2*q[0], 2*q[1]], [ 2*q[1], 2*q[0], 2*q[3], 2*q[2]], [0, -4*q[1], -4*q[2], 0], [-2*b[3]*q[2], 2*b[3]*q[3], -4*b[1]*q[2]-2*b[3]*q[0], -4*b[1]*q[3]+2*b[3]*q[1]], [-2*b[1]*q[3]+2*b[3]*q[1], 2*b[1]*q[2]+2*b[3]*q[0], 2*b[1]*q[1]+2*b[3]*q[3], -2*b[1]*q[0]+2*b[3]*q[2]], [ 2*b[1]*q[2], 2*b[1]*q[3]-4*b[3]*q[1], 2*b[1]*q[0]-4*b[3]*q[2], 2*b[1]*q[1]]]) step = J.T.dot(F) step = vector.normalize(step) # normalise step magnitude # Compute rate of change of quaternion qDot = 0.5 * quat.q_mult(q, np.hstack([0, Gyroscope])) - self.Beta * step # Integrate to yield quaternion q = q + qDot * self.SamplePeriod self.Quaternion = vector.normalize(q).flatten()
[docs] class Mahony: """Madgwick's implementation of Mayhony's AHRS algorithm Parameters ---------- rate : double sample rate [Hz] Kp : algorithm proportional gain Ki : algorithm integral gain Quaternion : output quaternion describing the Earth relative to the sensor """ def __init__(self, rate=256.0, Kp=1.0, Ki=0, Quaternion=[1,0,0,0]): """Initialization """ self.rate = rate self.SamplePeriod = 1/self.rate self.Kp = Kp self.Ki = Ki self.Quaternion = Quaternion self._eInt = [0, 0, 0] # integral error
[docs] def Update(self, Gyroscope, Accelerometer, Magnetometer): """Calculate the best quaternion to the given measurement values. Parameters ---------- Gyroscope : array, shape (,3) Angular velocity [rad/s] Accelerometer : array, shape (,3) Linear acceleration (Only the direction is used, so units don't matter.) Magnetometer : array, shape (,3) Orientation of local magenetic field. (Again, only the direction is used, so units don't matter.) """ q = self.Quaternion; # short name local variable for readability # Reference direction of Earth's magnetic field h = vector.rotate_vector(Magnetometer, q) b = np.hstack((0, np.sqrt(h[0]**2+h[1]**2), 0, h[2])) # Estimated direction of gravity and magnetic field v = np.array([ 2*(q[1]*q[3] - q[0]*q[2]), 2*(q[0]*q[1] + q[2]*q[3]), q[0]**2 - q[1]**2 - q[2]**2 + q[3]**2]) w = np.array([ 2*b[1]*(0.5 - q[2]**2 - q[3]**2) + 2*b[3]*(q[1]*q[3] - q[0]*q[2]), 2*b[1]*(q[1]*q[2] - q[0]*q[3]) + 2*b[3]*(q[0]*q[1] + q[2]*q[3]), 2*b[1]*(q[0]*q[2] + q[1]*q[3]) + 2*b[3]*(0.5 - q[1]**2 - q[2]**2)]) # Error is sum of cross product between estimated direction and measured # direction of fields e = np.cross(Accelerometer, v) + np.cross(Magnetometer, w) if self.Ki > 0: self._eInt += e * self.SamplePeriod else: self._eInt = np.array([0, 0, 0], dtype=np.float64) # Apply feedback terms Gyroscope += self.Kp * e + self.Ki * self._eInt; # Compute rate of change of quaternion qDot = 0.5 * quat.q_mult(q, np.hstack([0, Gyroscope])).flatten() # Integrate to yield quaternion q += qDot * self.SamplePeriod self.Quaternion = vector.normalize(q)
if __name__ == '__main__': """ in_file = r'../others/skinematics-invalid-sqrt.txt' import pandas as pd data = pd.read_csv(in_file, delimiter='\t') omega = data.filter(regex='Gyr*').values acc = data.filter(regex='Acc*').values analytical(omega = omega, accMeasured=acc) """ from sensors.xsens import XSens in_file = r'../tests/data/data_xsens.txt' initial_orientation = np.array([ [1,0,0], [0,0,-1], [0,1,0]]) #in_file = r'tests/data/data_xsens2.txt' #initial_orientation = np.array([[0,0,-1], #[1, 0, 0], #[0,-1,0]]) initial_position = np.r_[0,0,0] sensor = XSens(in_file=in_file, R_init=initial_orientation, pos_init=initial_position) # By default, the orientation quaternion gets automatically calculated, # using "analytical" q_analytical = sensor.quat def show_result(imu_data): "Dummy function, to simplify the visualization" fig, axs = plt.subplots(3,1) axs[0].plot(imu_data.omega) axs[0].set_ylabel('Omega') axs[0].set_title(imu_data.q_type) axs[1].plot(imu_data.acc) axs[1].set_ylabel('Acc') axs[2].plot(imu_data.quat[:,1:]) axs[2].set_ylabel('Quat') plt.show() show_result(sensor) # Automatic re-calculation of orientation if "q_type" is changed sensor.set_qtype('madgwick') q_Madgwick = sensor.quat show_result(sensor) sensor.set_qtype('kalman') q_Kalman = sensor.quat show_result(sensor) print('Done')