Ocular motor disorders
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Our detailed understanding of the physiology and anatomy of
the ocular motor system allows an accurate differential
diagnosis of pathological eye movement patterns. This review
covers important clinical studies and studies in basic research
relevant for the neurologist published during the past year. Cur
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Introduction

The field of clinically applied ocular motor physiology
could only be so successful in recent years because
important advances in basic research, especially studies
in monkeys and healthy human subjects, had a strong
and immediate impact on how clinicians diagnose and
treat eye movement disorders. Therefore, this review
covers both clinical studies and studies in basic research
relevant for the neurologist. The differential diagnosis of
ocular motor disorders requires a systematic assessment
of the different classes of eye movements (saccades,
smooth pursuit, vestibulo-ocular reflex etc.). This review
is structured according to this functional classification.

Clinical studies
In this first section, we review ocular motor studies that
were performed in patients:

Saccades

The basal ganglia are part of a network that is able to
suppress reflexive saccades generated in the superior
colliculus. As a result, the dynamics and metrics of
antisaccades are abnormal in patients with idiopathic
Parkinson’s disease [1]. In addition, saccades to remem-
bered targets are hypometric in these patients. The
finding that the final eye position after subsequent
correcting saccades is accurate suggests that the short-
term spatial working memory for this simple task is still
intact [2]. When these patients have to memorize
sequences of targets, however, each final eye position
falls short of the respective target [3]. Therefore the
spatial working memory required for those more com-
plex tasks seems to be impaired in Parkinson’s disease.
The memory-guided saccades of patients with Parkin-
son’s disease are less hypometric during electrical
stimulation of both subthalamic nuclei, but antisaccades
are not affected by the stimulation [4]. When patients
are treated with a one-sided pallidotomy, the frequency
of square-wave jerks increases [5]. In Tourette’s
syndrome, another disorder that affects the basal ganglia,
the number of anticipatory saccades increases when the
paradigm includes a time gap between the initial and
final visual target [6].

The frontal cortex contains two important regions that
are activated in the context of memory-guided saccades
and, hence, contribute to spatial working memory: the
frontal eye fields (FEF) and the dorsolateral prefrontal
cortex (DLPFC). In patients with a one-sided isolated
FEF lesion, contralateral memory-guided saccades are
hypometric; if the lesion includes the ipsilateral DLPFC,
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the amplitudes of saccades become, in addition, more
variable [7°]. Consistent with the hypothesis that the
capacity of the prefrontal cortex is reduced in autism,
patients with this disorder show an increased number of
reflexive saccades during both anti-saccade and memory-
guided saccade tasks, but no saccadic dysfunction that
would point to a cerebellar disorder [8]. Increased error
rates during anti-saccade and memory-guided saccade
tasks can also be seen in patients with myotonic
dystrophy [9]. Despite the central role of the FEF in
the spatial working memory, an isolated unilateral FEF
lesion (single case) does not affect anti-saccades; thus
this structure does not appear to participate in the
inhibition of reflexive saccades [10]. Neocortical areas of
the right medial temporal lobe participate in spatial
memory beyond short-term: after delays of more than
20 s, memory-guided saccades are significantly less
accurate in patients with right-sided surgical resections
of both the hippocampal formation and the adjacent
neocortex. The effect is more pronounced for leftward
saccades, and is not observed in patients with isolated
resections of the hippocampus. Saccades that are
normometric when evoked by visual stimuli, but
hypometric when evoked by auditory stimuli, are found
in patients with an isolated ipsilateral lesion of the
central thalamus [11].

The analysis of saccade dynamics may help in the
diagnosis of disorders that include the cerebellum:
Saccades are markedly slowed in spinocerebellar ataxia
(SCA) type 2, but not in SCA-1 or SCA-3 [12°]. Patients
with ataxia telangiectasia show, in addition to the typical
syndromes associated with dysfunction of the cerebellar
flocculus/paraflocculus, a prominent saccadic hypometria,
indicating additional lesions in the cerebellar vermis or
the basal ganglia [13]. In Joubert’s syndrome, a disease
that includes an abnormal development of the cerebel-
lum, an oculomotor apraxia in the horizontal and vertical
directions can be found. Because both saccades and
quick phases of nystagmus are impaired, this deficit is
probably caused by a disorder of premotor areas in the
brainstem [14]. In Gaucher disease type 3, the early
detection of impaired rapid eye movements (saccades,
quick phases of nystagmus) is crucial for starting a
potentially beneficial enzyme replacement therapy in
time [15].

Smooth pursuit eye movements

The inability to generate normal smooth pursuit eye
movements drastically reduces the capacity to analyse
moving objects visually [16°]. Both smooth pursuit
initiation and steady-state smooth pursuit are impaired
in patients with degenerative cerebellar lesions. These
dysfunctions cannot be compensated, even if the
stimulus is predictive [17]. The initial saccade during
ocular tracking, however, is normal in these patients. In

SCA-6 there seems to be a dissociation between smooth
pursuit and visual cancellation of the vestibulo-ocular
reflex (VOR). Although the gain of smooth pursuit
during tracking of a sinusoidal target is reduced, VOR
cancellation during passive whole-body oscillation is not
impaired [18°].

In patients with advanced Parkinson’s disease, the gain
of smooth pursuit is reduced; anticipatory pursuit,
however, can be initiated with the same short latency
as in healthy subjects [19]. In analogy to the progressive
bradykinesia of limb movements observed in these
patients, smooth pursuit deteriorates with time during
ocular motor testing,.

Vestibulo-ocular reflex

Recordings of eye movements elicited by a vestibular
imbalance help to identify the components of the
peripheral or central vestibular system affected by a
lesion [20]. The analysis of three-dimensional eye
velocity in response to hyperventilation in patients with
unilateral vestibular schwannoma reveals which semicir-
cular canal fibres are most affected by the tumour [21°].
The same kinematic analysis of eye movements can be
used to identify the location of semicircular canal fistulae
[22]: ipsilateral pressure applied to the external auditory
canal evokes conjugate eye rotations about an axis that is
nearly parallel to the sensitivity vector of the canal with

the fistula [23°].

Patients with a combined vestibular and cochlear loss on
one side show a more pronounced and longer lasting
asymmetry of the horizontal VOR during low-frequency
rotatory tests than patients with an isolated unilateral
vestibular loss [24]. This difference is probably directly
related to the extent of the labyrinthine lesion. The
initial asymmetry of the low-frequency horizontal VOR
after a sudden unilateral vestibular deficit usually
becomes symmetrical over time, but this phenomenon
does not correlate well with the improvement of the
caloric response on the affected side [25]. Both
peripheral recovery and central compensation thus
participate in partly restoring the function of horizontal
VOR at low frequencies over time.

Using Halmagyi—Curthoys head impulses about differ-
ent axes of head rotation, while recording the move-
ments of eye and head with dual search coils, one can
relate the elicited three-dimensional high-frequency
VOR to the pathways of individual semicircular canals
[26]. If the gain of this high-frequency VOR is reduced,
catch-up saccades already appear with latencies as short
as 70 ms [27°]. In a patient with internuclear ophthal-
moplegia, head-impulse testing demonstrated that ver-
tical vestibulo-ocular pathways in humans are organized
in the coordinates defined by the semicircular canals, but



part of the signals from the anterior canals seem to
bypass the medial longitudinal fasciculus [28°]. After
vestibular neuritis, the gain during torsional head
impulses towards the affected side is reduced only
initially, but returns to normal over time [29°]. This
might reflect a recovery of the otolith organs after
neuritis. An alternative explanation is the loss of
polarization of the remaining utricle after the lesion,
which subsequently restores the symmetry of the
dynamic ocular counter-roll. Such a mechanism is
suggested by a study on the linear VOR in patients
after unilateral vestibular nerve section. Horizontal eye
movements in response to lateral head translation are
unilaterally diminished early after the operation, but
regain symmetry after 6-10 weeks [30].

The cervico-ocular reflex in individuals without vestib-
ular function is usually enhanced. This probably causes
the increased eye movement responses observed during
vibrations of the neck [31]. When patients with complete
bilateral vestibular loss are oscillated on a turntable while
the head and shoulders are kept space-stationary, the
ocular responses are similar to those during body
oscillations with the head space-stationary [32]. There-
fore the influence of axial body motion on eye move-
ments seems to extend below the neck in these patients.
If the bilateral vestibular loss is caused by a labyrinthine
failure, galvanic stimulation on the mastoid processes can
still produce eye movements [33]. In the case of bilateral
vestibular nerve failure, however, no ocular responses
can be recorded.

To prevent retinal slippage during head movements, the
central nervous system must modify the gain of the VOR
according to the distance between the eyes and the
target. The absence of the necessary VOR gain
modifications in patients with cerebellar dysfunction
during transient, high-acceleration yaw rotations demon-
strates the important role of the cerebellum in the
vergence-induced modulation of the VOR [34°].

Gaze holding

Gaze holding depends on an intact cerebellar flocculus/
paraflocculus. In patients with acquired cerebellar atro-
phy, the ocular drift not only includes the well-known
horizontal-centripetal and upward components, but also a
torsional component, which is intorsional in abduction
and extorsional in adduction [35°]. This torsional drift
leads to a violation of Listing’s law, suggesting that the
cerebellum is critically involved in encoding the correct
three-dimensional kinematics of eye rotations.

Spontancous nystagmus interferes with gaze-holding,
leading to oscillopsia and reduced visual acuity. Elec-
tronically controlled motor-driven prisms that compen-
sate for the pathological nystagmus can reduce oscillopsia
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in patients with acquired pendular nystagmus [36]. A
portable version of the prisms is being developed.
Advances in the neuropharmacology of the ocular motor
and vestibular systems have led to the identification of
candidate drugs for the treatment of abnormal eye
movements [37]

Studies in basic research relevant for

the neurologist

In this section we review experiments performed in
healthy human subjects and monkeys. (To improve
readability, we do not always state whether a study was
carried out in humans or monkeys; this usually is evident
from the title of the respective reference.)

Eye plant

The discovery of connective tissue sleeves that me-
chanically couple extraocular muscles to the orbital wall,
so-called pulleys, has revolutionized the kinematic
understanding of the ocular motor plant. On the basis
of high-resolution magnetic resonance imaging (MRI)
and histological studies, the pulley concept has now
been expanded by showing that the orbital layers of the
rectus muscles insert on its own pulley, rather than on
the ocular globe [38°°]. This arrangement might explain
many observed characteristics of eye rotations [39].

Important for strabismus surgery are the anatomical
variations in the extra-ocular muscles. A survey of MRI
images of strabismus patients has revealed a relatively
frequent absence of the superior oblique muscle in
patients diagnosed with SO palsy [40]. The occasional
failure of inferior oblique-weakening surgeries may be
due to the large number of anatomical variations of this
muscle (multiple muscle insertions, duplications of the
muscle) [41].

Saccades

Despite the close connection between the superior
colliculus and omni-pause neurons (OPN) [42°], excita-
tion of OPN by the superior colliculus is not sufficient to
reactivate OPN and stop the saccades [43]. Also, OPN
do not make up a uniform group: in addition to typical
‘saccade’ OPN there are ‘complex’” OPN that pause
during the total gaze displacement [44]. Using transcra-
nial magnetic stimulation over the DLPFC it is possible
to increase the number of contralateral express saccades
during gap tasks, which confirms that this cortical
structure inhibits the superior colliculus [45°].

Lesions in the ocular motor vermis lead to hypometric
saccades and the loss of rapid adaptation capability in
one horizontal direction. However, a slow recovery of the
dysmetria can be observed if hundreds of repetitive
saccades are executed [46]. Functional MRI studies
during saccades and optokinetic nystagmus suggest that
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hemispheric cerebellar activity may be related to
changes in attention, whereas vermal activity (uvula,
culmen) is associated with ocular motor control [47].

Vestibulo-ocular reflex

The VOR can be partitioned in a linear and a non-linear
pathway. Whereas in healthy monkeys the effects of the
non-linear pathways are evident at frequencies of 4 Hz
or greater [48], they become especially prominent after
canal plugging [49] or vestibular neurectomy [50°]. The
non-linear VOR pathway accounts for frequency-specific
recovery after the functional loss of one or more
semicircular canals, as well as the clear asymmetries that
are revealed by head-impulse testing. During a rapid
head rotation, the ocular response starts with a small,
anti-compensatory eye movement that may be attributed
to the mechanics of the oculomotor plant [51°]. The
latency of the VOR during head impulses in healthy
human individuals is approximately 8 ms. Target dis-
tance modifies this high-acceleration VOR within the
first 10 ms, but an increase in the angular VOR gain after
adaptation to telescopic spectacles has no effect during
the early phase [52]. Voluntary VOR cancellation can
appear as early as 48 ms after the onset of rotation [53].

Kinematically, eye movements elicited by Halmagyi—
Curthoys head impulses differ from saccades despite
similar dynamics: Whereas the ocular rotation axes
during horizontal saccades tilt in the direction of the
line-of-sight by half the vertical gaze angle, vertical eye
position has little effect during the initial phase of head
impulses [54]. During active head impulses, however,
and at the end of passive head impulse, VOR trajectories
are similar to saccade trajectories, i.e. they tend to
comply with Listing’s law [39]. Whether these experi-
mental findings can be directly related to the geometry
of muscle pulleys remains to be tested [55].

Smooth pursuit

Functional MRI can now distinguish cortical areas
related to smooth pursuit eye movements from those
related to saccades [56]. In monkeys, lesions of the
dorsal vermis do not prolong the latency of pursuit
initiation, but impair the dynamic properties during
pursuit initiation and the adaptive control of pursuit eye
velocity [57°]. Stimulation of the rostral superior
colliculus, which is generally associated with fixation,
also affects smooth pursuit: it primarily suppresses
pursuit to ipsiversive moving targets [58°]. Pursuit is
also modified by small lesions in the nucleus reticularis
tegmenti pontis. Such lesions lead to temporary deficits
in pursuit initiation and maintenance, probably by
interrupting a cortico—ponto—cerebellar pathway [59].

Gaze holding
Cells with a major input to the cerebellar flocculus can

be found in the paramedian tract (PMT) of the
brainstem. Inactivation of PM'T units with a burst-tonic
firing pattern in the upward direction produces gaze-
holding deficits that are similar to those caused by
inactivation of the interstitial nucleus of Cajal [60°]. This
suggests that the input signal from PMT neurons is
crucial for ocular motor integration in the cerebellum.

Binocularity

Whereas monocular recordings have yielded variable
predictions about the relationship between ocular torsion
and vergence, an investigation of cyclotorsion confirmed
that the Listing’s planes of both eyes are rotated
temporally by half the vergence angle [61]. The
magnitude of that vergence-induced torsion is indepen-
dent of whether vergence is driven by accommodation or
horizontal disparity [62]. Cyclodisparity induced by
Dove prisms can adaptively change the gain of ocular
counter-roll separately in both eyes [63°]. The decay of
stereoscopically induced cyclovergence in total darkness
is incomplete, therefore there exists a phoria adaptation
for torsional alignment [64]. Gain asymmetry of ocular
counter-roll to lateral head tilt in patients with unilateral
utricular loss can now be simulated by a mathematical
model that takes into account the known facts on otolith
organs and pathways [65°]. This model also predicts the
magnitude of ocular torsion and skew deviation for
different brainstem lesions.

Conclusion

The increasing number of publications on ocular motor
topics during recent years is quite astonishing. We are
pleased to say that, in our view, the majority of papers
published during the past year have a very high scientific
standard, which made our selection exceptionally
difficult.
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